Week 4: Newton Basins

qdrive
Δ
qnewt
Δ
myownpolyder

Note: figure does not

Root 1: Yellow
Root 2: Red
Root 3: green
Root 4: blue
I claim that you only need four color cases. What does it mean when we see white on the plot?

It would be extremely expensive to invoke a for loop and run through every point in the window.

In fact, unless we were working with a finite set of points, the loop would go on forever, and the picture would become more and more detailed

So we make a lattice that covers the plane (window specified by xt and yt) and perform Newton's method on all of the points at once!

Then we have a huge collection (matrix) of the roots that Newton's method finds for each starting point in the lattice.

Outline

function qdrive
run qnewt on all 4 quartics
return
function qnewt(q,xt,yt,maxiter)
We will unpack this one
return
function d=myownpolyder(q)
Write your own derivative-taking function (one-liner) return

qdrive

```
function qdrive
    qnewt([1 0 -0.84 0 -0.16],[.45 .0001 .55],[-.05 .0001 .05],20)
    [1 0 -0.84 -0.1 -0.16]
    [1 -0.1 -0.84 0 -0.16]
    [1 -0.1i -0.84 0 -0.16]
return
all of the plotting
is taken care of
in qnewt! The
driver really just
specifies the
quartics and the
dimensions of
the grid.
```


qnewt(q,xt,yt,maxiter)

function qnewt(q,xt,yt,maxiter)

1. create meshgrid \qquad $\mathrm{y}=-.15: .0025: .15$; [X,Y] = meshgrid(x, y);
2. take derivative of your q using $d q=\operatorname{mypolyder}(q)$
3. Run Newton on entire lattice at once $\mathrm{Z}=\mathrm{X}+\mathrm{i} * \mathrm{Y}$; What are the numerator and
for $k=1$:maxiter, $Z=Z-(Z . \wedge 2-1) \cdot *(Z . \wedge 2+0.16) . /(4 * Z . \wedge 3-1.68 * Z) ;$ Why the ' $' ?$ end
4. Find roots of q . There is a built-in

MATLAB function for this:
$R=\operatorname{roots}(q) ;$ \qquad

We know that there are 4 roots of q. So in what form must R be?

plotting in qnewt

R is a 1×4 vector of the roots of q.
We will evaluate each of these roots independently, and see which points in Z ended up at that root. 0.1 is the tolerance you

1. $[i 1, j 1]=\operatorname{find}(a b s(Z-1)<0.1) ;$
will use
2. Plot: use indices i1 and j1 to access points in the $x-y$ plane; color those points whatever color you like. Use markersize 1.

- Hint for accessing points in the x-y plane: where have we discretized the plane/created a lattice? (see slide 8, step 1).

1 is an
example root from the notes.
How can we write each of the roots in terms of R for the four cases?
3. hold on, and repeat for the next 3 roots.

$\mathrm{dq}=$ myownpolyder(q)

How can we automate the process of arriving from q to dq? What same operations are performed every time?

$\mathrm{dq}=$ myownpolyder(q)

-kill the last element of q
-multiply the first four elements of q by the corresponding exponents [llllll 4321 1]

