
Fiber Networks I: The Bridge 



One function: bridge.m 

Needs to accomplish 3 major goals:  



One function: bridge(Ea,W,nos) 

Needs to accomplish 3 major goals: 
– Build adjacency matrix (address bridge in 

undeformed state)… automate except for first 
and last stages! 

– Find coordinates of undeformed bridge 
– Find coordinates of deformed bridge 



The Adjacency Matrix: some review 

x1	
   x3	
   x5	
  

x2	
   x4	
   x6	
  

7 fibers; 3 nodes. When we consider the elongation of a fiber, we evaluate 
what’s going on at the nodes at each of its endpoints. Note that some of its 
endpoints may not be associated with nodes if they’re connected to the edge.   

When you get a new structure, always start by drawing it by hand and labeling your 
degrees of freedom at each node.  



Calculating Elongation 
Stretch fiber 1 

pi/2	
  

Fiber 1 is only associated with one 
node, so we don’t have to consider 
subtraction in this simple case. 

We have:  
e1=(x1)cos(90) + (x2)sin(90) 
     =(x2)sin(90). 

Don’t get confused about the signs 
and subtracting. Think of it more as 
an absolute difference in lengths 
than a literal difference. If you are 
actually subtracting when there are 
multiple nodes, just be consistent 
in subtracting head-tail or tail-head, 
it doesn’t matter which. 



x1	
   x3	
   x5	
  

x2	
   x4	
   x6	
  

Each row in the adjacency matrix corresponds 
to a fiber (the elongation of that fiber, e1…eN) 

Each column in A corresponds to a degree 
of freedom. You put in that entry the 
coefficient  of that degree of freedom in the 
list of elongations you made above. 

e1 

e2 

e3 

e4 

e5 

e6 

e7 

x1 x2 x3 x4 x5 x6 



Why?  
Because we want to be able to write e=Ax…  

         

x1	
  
x2	
  
x3	
  
x4	
  
x5	
  
x6	
  

e1	
  
e2	
  
e3	
  
e4	
  
e5	
  
e6	
  
e7	
  
e8	
  

=

e1 = 0x1+1x2+0x3+0x4+0x5+0x6 

     =  x2,         

e2 = 0x1+1x2+sx3+sx4+0x5+0x6 

     =    sx3+sx4   

…and write our elongations as a system of equations         
in terms of x1…xn  



Our project: adjacency matrix 
1.  Draw and 

label degrees 
of freedom 

2.  Write out 
elongations by 
hand. 

3.  Divide into 
“cases” 

4.  Automate 
(figure out how 
to represent 
each case in 
terms of a 
counter in a for 
loop) 

You will HARD 
CODE the first and 

last “stages” 
because they don’t 

fit in the other 
generalizable cases 

you will discover 
because they are 

not attached to two 
nodes (fibers 1,2, 

14, 15). 

spy A using the 
spy command 
before moving on!  



Undeformed coordinates 

(0,0)	
  

(1,0)	
  

(1,1)	
  

(2,0)	
  

Build xcor and ycor: 
each is small two-
column matrix with 
one row for each 

fiber. The first 
element in that row 
is the starting x (or 

y) coordinate of that 
fiber, and the 

second element in 
that fiber’s row is the 
ending coordinate 

(x in xcor, y in ycor). 

We will plot xcor 
and ycor using 

line, and update 
them upon 

deformation due 
to an applied 

load. 



Updating Coordinates upon Deformation 

•  You have xcor and ycor, the undeformed 
coordinate matrices. It’s a problem of 
addition: add something to those 
coordinates under different loads and plot 
new coordinates (xcorold
+change=xcornew) to see deformation. 
Not conceptually difficult. 



How to implement? 
•  First you need to solve for the displacement itself. 

Remember 

•  A is adjacency matrix,  
•  K is a diagonal matrix of fiber stiffnesses. Remember 

the stiffness of a fiber = Ea/L. We need a vector of 
lengths of each of the fibers, then we can compute a 
vector k, and make this vector the diagonal of a matrix 
K.  

•  We then use MATLAB’s built-in solver x=S\f to find 
displacements (x). Remember we have 4 different f 
vectors depending on where the cars are (do this four 
times and superimpose plots). 

S 



Updating xcor and ycor 
Once we have these displacements, we can add them to the original 
coordinates to find the deformed coordinates, then plot those.  

Again, we hard-code the beginning and ending stages, and automate 
everything in the middle (because the middle we can again divide into “cases.” 

What form is the otuput of x=S\f?   



Updating xcor and ycor 
Once we have these displacements, we can add them to the original 
coordinates to find the deformed coordinates, then plot those.  

Again, we hard-code the beginning and ending stages, and automate 
everything in the middle (because the middle we can again divide into “cases.” 

What form is the otuput of x=S\f? 

    x =  1 x dof vector: 

 we need to update xcor and ycor 
based on movement in the x direction  
(odd elements of x) and movement in  
the y-direction (even elements of x).       

x1	
  
x2	
  
x3	
  
x4	
  
x5	
  
x6	
  
…	
  

movement 
(displacement) 
at degree of 
freedom x1  


