
Fiber Networks I: The Bridge

One function: bridge.m

Needs to accomplish 3 major goals:

One function: bridge(Ea,W,nos)

Needs to accomplish 3 major goals:
– Build adjacency matrix (address bridge in

undeformed state)… automate except for first
and last stages!

– Find coordinates of undeformed bridge
– Find coordinates of deformed bridge

The Adjacency Matrix: some review

x1	
 x3	
 x5	

x2	
 x4	
 x6	

7 fibers; 3 nodes. When we consider the elongation of a fiber, we evaluate
what’s going on at the nodes at each of its endpoints. Note that some of its
endpoints may not be associated with nodes if they’re connected to the edge.

When you get a new structure, always start by drawing it by hand and labeling your
degrees of freedom at each node.

Calculating Elongation
Stretch fiber 1

pi/2	

Fiber 1 is only associated with one
node, so we don’t have to consider
subtraction in this simple case.

We have:
e1=(x1)cos(90) + (x2)sin(90)
 =(x2)sin(90).

Don’t get confused about the signs
and subtracting. Think of it more as
an absolute difference in lengths
than a literal difference. If you are
actually subtracting when there are
multiple nodes, just be consistent
in subtracting head-tail or tail-head,
it doesn’t matter which.

x1	
 x3	
 x5	

x2	
 x4	
 x6	

Each row in the adjacency matrix corresponds
to a fiber (the elongation of that fiber, e1…eN)

Each column in A corresponds to a degree
of freedom. You put in that entry the
coefficient of that degree of freedom in the
list of elongations you made above.

e1

e2

e3

e4

e5

e6

e7

x1 x2 x3 x4 x5 x6

Why?
Because we want to be able to write e=Ax…

x1	

x2	

x3	

x4	

x5	

x6	

e1	

e2	

e3	

e4	

e5	

e6	

e7	

e8	

=

e1 = 0x1+1x2+0x3+0x4+0x5+0x6

 = x2,

e2 = 0x1+1x2+sx3+sx4+0x5+0x6

 = sx3+sx4

…and write our elongations as a system of equations
in terms of x1…xn

Our project: adjacency matrix
1.  Draw and

label degrees
of freedom

2.  Write out
elongations by
hand.

3.  Divide into
“cases”

4.  Automate
(figure out how
to represent
each case in
terms of a
counter in a for
loop)

You will HARD
CODE the first and

last “stages”
because they don’t

fit in the other
generalizable cases

you will discover
because they are

not attached to two
nodes (fibers 1,2,

14, 15).

spy A using the
spy command
before moving on!

Undeformed coordinates

(0,0)	

(1,0)	

(1,1)	

(2,0)	

Build xcor and ycor:
each is small two-
column matrix with
one row for each

fiber. The first
element in that row
is the starting x (or

y) coordinate of that
fiber, and the

second element in
that fiber’s row is the
ending coordinate

(x in xcor, y in ycor).

We will plot xcor
and ycor using

line, and update
them upon

deformation due
to an applied

load.

Updating Coordinates upon Deformation

•  You have xcor and ycor, the undeformed
coordinate matrices. It’s a problem of
addition: add something to those
coordinates under different loads and plot
new coordinates (xcorold
+change=xcornew) to see deformation.
Not conceptually difficult.

How to implement?
•  First you need to solve for the displacement itself.

Remember

•  A is adjacency matrix,
•  K is a diagonal matrix of fiber stiffnesses. Remember

the stiffness of a fiber = Ea/L. We need a vector of
lengths of each of the fibers, then we can compute a
vector k, and make this vector the diagonal of a matrix
K.

•  We then use MATLAB’s built-in solver x=S\f to find
displacements (x). Remember we have 4 different f
vectors depending on where the cars are (do this four
times and superimpose plots).

S

Updating xcor and ycor
Once we have these displacements, we can add them to the original
coordinates to find the deformed coordinates, then plot those.

Again, we hard-code the beginning and ending stages, and automate
everything in the middle (because the middle we can again divide into “cases.”

What form is the otuput of x=S\f?

Updating xcor and ycor
Once we have these displacements, we can add them to the original
coordinates to find the deformed coordinates, then plot those.

Again, we hard-code the beginning and ending stages, and automate
everything in the middle (because the middle we can again divide into “cases.”

What form is the otuput of x=S\f?

 x = 1 x dof vector:

 we need to update xcor and ycor
based on movement in the x direction
(odd elements of x) and movement in
the y-direction (even elements of x).

x1	

x2	

x3	

x4	

x5	

x6	

…	

movement
(displacement)
at degree of
freedom x1

