Single-layer Perceptron

The perceptron machine learning algorithm was devised in 1957 by Frank Rosenblatt at
Cornell University. It is executed here as a supervised learning algorithm, meaning a
desired, or known, output exists. We train the perceptron to do our bidding based on
how closely its guesses at each iteration correspond to the known output.

We can think of the perceptron as a group of n input neurons that communicate at n
synapses with a single output neuron. Each input neuron receives an input x;, and
the affect of this stimulation on the output neuron depends on the strength w; of the
synaptic connection between them. Training the perceptron involves changing these
synaptic weights over many iterations to arrive at the set of weights wy...w, producing
an output o that matches our desired output, y.

Figure 1: Synaptic weights w;...w, updated upon every iteration determine how much each input
(x1...x) contributes to the output (0) of the perceptron.

Our training routine will consider binary inputs and outputs. Specifically, each input
neuron is either stimulated (x; = 1) or not (x; = 0), and the output (a weighted sum of
binary inputs) is either 1 or 0.

You may be wondering how an output that is a weighted sum of 1’s and 0’s is restricted
to being either 1 or 0. We appeal to basic principles of neuroscience and realize that
neural firing is an all-or-none event. In other words, a neuron fires (0 = 1) if the weighted
sum of inputs exceeds a given threshold, and doesn’t fire (0 = 0) if it does not reach
threshold. To simplify matters, we set this threshold to 0 and pass our weighted sum 6
to a threshold function f(6) which returnsa 1if 6 > 0 and a 0 if 6 < 0.

To train a perceptron, you are coding a learning algorithm that governs the evolution of
synaptic weights over time. How do these weights change?

http://csis.pace.edu/~ctappert/srd2011/rosenblatt-contributions.htm

The Perceptron Learning Algorithm

At each iteration j, the perceptron calculates the output based on the current input
pattern (a vector of x;...x, values) and weights (a vector of wy...w, values), then updates
the weights based on how much its output o differs from the desired output y. The
algorithm involves three basic steps at each j:

The current output is given by

1, if6>0

o = f(z w;x;) where f(0) = 0 ifo< 0' (1)
i—1 % s U

The difference between o/ and desired output y can be calculated as
d=y—o (2)
Each weight is then updated by AW; where

AW, = Edfx{ fori=1.n,w; = w; + Aw; (3)
with ¢ as the learning rate that scales changes in weight.

Why do we need a learning rate? Imagine a scenario where the input neurons received
an abnormal stimulation pattern; we wouldn’t want these inputs to affect the weights to
such an extent that it would subsequently take many normal inputs to get back on track.
Setting ¢ = 0.01 and jy;;ux = 1000 should keep things in check.

j=1 f:2 j=3] = Jmax
34— Au;mt;/z/(!h\mw, —w,+Au:)lw/z/JU?)\w’Z » w@pﬂ

-0 deée- B oo -0

A A A , A 44 A 44 4

X1 X2 X3 Xn r] xz x3 xn X1 X2 X3 Xn

Figure 2: We see in this example that weights [wi...wn] change for j = 1:jmax as the per-
ceptron arrives at its final, well-trained form. Input neuron 1 becomes most influential and
input neuron 2 becomes least influential (weight w; is greatest, w, is smallest). The strengths of
synapses 3 and 4, w3 and wy, also evolve over time.

We will implement the perceptron learning algorithm to solve three classification prob-
lems: an AND problem, an OR problem, and an XOR problem.

2

Consider a perceptron where n = 2, i.e.,, where there are only two input neurons. In
each of Tables 1 through 3 below, we consider the desired output y for 4 combinations
of inputs. Training a perceptron to arrive at o = y = 1 would involve, for j=1:jmax,
handing each of the four combinations of inputs [x1 x2] to the perceptron learning
algorithm.

The AND Problem

We seek a vector of weights [wl...wn] such that the output neuron fires (0 = 1) when
all input neurons are stimulated (x; and x; = 1).

X1 | X2 | Y
1111
11010
O] 110
01010

Table 1: AND with two inputs

The OR Problem

We seek a vector of weights [w1l...wn] such that the output neuron fires (0 = 1) when at
least one of the input neurons is stimulated (x; =1 or x = 1, or both).

X1 | X2 | VY
1111
1101
0111
0|00

Table 2: OR with two inputs

The XOR Problem

We seek a vector of weights [w1...wn] such that the output neuron fires (0 = 1) when
exactly one of the input neurons is stimulated (either x; = 1 or x, = 1, but not both).

X1 | X2 | Y
11110
1011
0111
0010

Table 3: XOR with two inputs

Project: Perceptron Classification

Your project consists of writing two functions, a driver pdrive which calls a function
perceptron in the form [w, wO] = perceptron(x,y), where x is a set of length(x) dif-
ferent inputs to n input neurons, and y is the vector of desired outputs corresponding to
each of these input patterns. In perceptron you will code the perceptron learning algo-
rithm such that, when the perceptron is handed this set of inputs, its output o matches
the desired ouput y. As proof of its success, the function perceptron will return to you
the set of optimal weights w = [wl...wn] that produce an output corresponding to y for
each input pattern x.

pdrive will run perceptron on the AND, OR, and XOR problems considered above.
Tables 1, 2, and 3 hint at your input structure. For example, to run the perceptron on the
AND problem, you would use:

x= 1 y =

[w, wO] = perceptron(x,y)

O O =
O = O =
O O O -

You will notice that x is the same for each classification problem, whereas y changes
based on whether we want to perform an AND, OR, or XOR operation on the inputs.
Furthermore, each row of x presents a set of inputs x1...xn with desired output in
the corresponding row of y. For the perceptron to arrive at weights that perform the
correct operation on any of the inputs, your training routine will need to update weights
wl...wn across successive presentations of the different input vectors, of which there are
length(x) in number (in our example, length(x) = 4). Your learning algorithm should
accomodate an x of arbitrary size, and pass each row of x through the learning algorithm
jmax = 1000 times. You may set all weights initially to 1.

pdrive

Finally, we seek a way to visualize these solutions, and ask ourselves: what would
happen if we handed our trained perceptron an input vector that was not contained in
the set of training inputs x?

In fact, we can answer this question using only the set of optimal weights returned by
our perceptron. We can also use these weights to display the perceptron’s output for all
potential inputs [x1 x2]. To do this, recall that the perceptron’s output is returned from
a thresholding function, which compares the weighted sum of inputs, wyx; + wpxp = 6,
to the threshold 0, and returns a 1 if 6 > 0 and a 0 if 8 < 0. We consider the line

w1x1 +wrxp; —0 =0,
and realize that the perceptron will return a 1 for all point pairs (x1, x2) above this line,

and a 0 for all pairs of inputs below this line.

4

AND case, w=0.44 0.44, w0=-0.45

0.44x1 +0.44x, — 045 =0

051

05 I I I
-0.5 0 0.5 1 15

ORcase, w=1 1, w0=-7.5287e-16

Ix1+1x,—0=0

0.5

05 L L)
-0.5 0 0.5 1 15

XOR case, w=0.02 0.01, w0=-7.4593e-16

051

0.02x1 +0.01x, -0 =20

05 I)
-0.5 0 0.5 1 15

The above plots are those that you will create in pdrive after calling perceptron on the
AND, OR, and XOR problems. Scatter with appropiate color choices (and a markersize
of at least 800) paints the point with coordinates (x1,x2) red if the perceptron will return
a 0 for that input pattern, and green if the perceptron will return a 1. The four points
plotted on each set of axes are those defined by x, with colors specified by y. For example,
to plot only the point (1,1) with a large marker in green, one could execute:

scatter(1,1,800,’g.’)

You will notice in the AND and OR cases that we are able to draw a line dividing input
pairs into two output classes, {1, 0}. Yet in the XOR case, we examine the scattering of
four colored inputs and recognize that there is no way to draw a line dividing the plane
into the appropriate sections, so the perceptron cannot solve the XOR problem. Formally
we refer to the classes in the XOR case as being not linearly separable.

Thus we recognize that the perceptron can only solve linearly separable problems.

Our work here is almost done. However, we have yet to establish how 6 is chosen to
draw the line wyx; + woxy; — 60 = 0. Your perceptron will find 6 automatically if you
create another weight, wy, assigned to an input that is always 1. We call this wy the bias
bit, which is the second output of the perceptron function.

In perceptron, you will need to add this bias bit to the vector of weights before running
the perceptron algorithm, and afterwards strip off the bias weight from the computed
[wi...wn+1] to return [w wO]. How do you handle the extra input that is always one?
Update x within perceptron by adding an extra column of ones on the right.

Your work will be graded as follows:

5 pts for header containing detailed usage of each function
5 pts for further comments in code
3 pts for indentation
15 pts for correct perceptron function
10 pts for correct pdrive
12 pts for reproducing the titled figures on the previous page corresponding
to AND, OR, and XOR problems

