Bridge II

Docta Kush

Purpose

- To essentially recreate the " \backslash " method used in last week's method.
- We will also be recreating a different bridge that has two vertical fibers of length 3

Functions

- Bridge2(Ea, W, nos) - creates plot and bridge
- $E a=1, W=0.05$, nos=8
- $\mathrm{X}=$ gauss($\mathrm{S}, \mathrm{f})$ - puts matrix in upper triangular form
- Replaces $X=S / f$
- Calls trisolve(S,f)
- $X=$ trisolve $(S, f)-$ solves for that matrix

Matrices

- Triangular matrix > diagonal matrix
- It can handle O's unlike the diagonal matrix
- We create the triangular matrix by "swapping" and "row mixing"

Demo of Gauss

Here is S augmented with f :

2	4	2	2
1	2	4	3
4	2	1	1

rows 1 and 3 are swapped:

4	2	1	1
1	2	4	3
2	4	2	2

our first pivot is 4 and elimination occurs in column 1:

$$
\begin{array}{llll}
4 & 2 & 1 & 1 \\
0 & 3 / 2 & 15 / 4 & 11 / 4 \\
0 & 3 & 3 / 2 & 3 / 2
\end{array}
$$

rows 2 and 3 are swapped:

4	2	1	1
0	3	$3 / 2$	$3 / 2$
0	$3 / 2$	$15 / 4$	$11 / 4$

our second pivot is 3 and elimination occurs in column 2 :
$\begin{array}{llll}4 & 2 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 3 & 3 / 2 & 3 / 2\end{array}$

Demo of Trisolve

$$
\begin{array}{ll}
x(3)=2 / 3 & \\
3 * x(2)+(3 / 2) *(2 / 3)=3 / 2 & \text { so } x(2)=1 / 6 \\
4 * x(1)+2 *(1 / 6)+1 *(2 / 3)=1 & \text { so } x(1)=0
\end{array}
$$

