

Purpose

- To essentially recreate the "\" method used in last week's method.
- We will also be recreating a different bridge that has two vertical fibers of length 3

Functions

- Bridge2(Ea, W, nos) creates plot and bridge
 - Ea = 1, W = 0.05, nos=8
- X = gauss(S,f) puts matrix in upper triangular form
 - Replaces X = S/f
 - Calls trisolve(S,f)
- X = trisolve(S,f) solves for that matrix

Matrices

- Triangular matrix > diagonal matrix
 - It can handle O's unlike the diagonal matrix
 - We create the triangular matrix by "swapping" and "row mixing"

Demo of Gauss

Here is S augmented with f:

2 4 2 2 1 2 4 3 4 2 1 1 rows 1 and 3 are swapped: 4 2 1 1 1 2 4 3 2 4 2 2 our first **pivot** is 4 and elimination occurs in column 1: 4 2 1 1

4	2	1	1
0	3/2	15/4	11/4
0	3	3/2	3/2

rows 2 and 3 are swapped:

4	2	1	1
0	3	3/2	3/2
0	3/2	15/4	11/4

our second **pivot** is 3 and elimination occurs in column 2:

4	2	1	1
0	3	3/2	3/2
0	0	3	2

Demo of Trisolve

x(3) = 2/3 3*x(2) + (3/2)*(2/3) = 3/2 so x(2) = 1/64*x(1) + 2*(1/6) + 1*(2/3) = 1 so x(1) = 0