
2. Building a Passive Neuron

2.1. Batteries, Resistors, and Capacitors

The signals in the brain arise from the motion of charged particles - typically
ions of sodium, Na+, chloride, Cl−, potassium, K+, and calcium, Ca++.

Figure 2.1. The typical neuron pumps chloride out of the cell to the degree
that its intracellular concentration is one tenth of its extracellular concentration.
This imbalance establishes a nonzero rest potential, VCl. We impale the cell with
an electrode that delivers current I and measures the resulting potential, V .

The energy required to move charge is called voltage while the rate at which
charge moves is called current.

A battery is a source of constant voltage, e.g., VCl.

A resistor is a device that resists (or diminishes) current. Voltage, current and
resistance come together in the circuit model, see Figure 2.1, that biologists use of
the cell’s chloride channel. In this case we denote the resistance of the channel by
RCl and place it line (or in series) with the chloride battery, VCl. We then denote
by ICl the current traveling through the resistor. We connect these quantities to
the transmembrane potential,

V ≡ Vin − Vout (2.1)

via

Ohm’s Law: The current through a resistor equals the voltage drop across
the resistor divided by its resistance.

To put this into practice, with reference to Figure 2.1, we find

ICl = (Vmid − Vout)/R. (2.2)
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As voltages in series add we find

Vmid + VCl = Vin. (2.3)

On combining (2.1)–(2.3) we arrive at the final mathematical model of the chloride
channel,

ICl = (V − VCl)/RCl. (2.4)
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Figure 2.2 We model the cell membrane as a battery of size VCl in series with
a resistance RCl.

A capacitor is a device that stores charges in proportion to the voltage V across
it. In particular, the charge Q stored by a capacitor of capacitance C will be

Q = C · V. (2.5)

When we say that current is the velocity of the charge we mean that current is the
slope of the charge graph. That is

I(t) =
change in charge

change in time
=

Q(t + dt) − Q(t)

dt
(2.6)

for some small time step, dt. For example, consider
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Figure 2.3. For small dt, please confirm that if we substitute this Q into (2.6)
we find I(t) = 0 when 0 < t < 1, I(t) = 1 when 1 < t < 2 and I(t) = 2 when
2 < t < 3.
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If we now combine equations (2.5) and (2.6) we arrive at a current–voltage rela-
tionship for capacitors,

IC(t) = C ·
V (t + dt) − V (t)

dt
(2.7)
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Figure 2.4. We add to the model above a parallel current that mimics the
membrane’s ability to store charge.

The fundamental circuit law is a simple balance law that requires current in to
balance current out. In our case this reads

Istim(t) = ICl(t) + IC(t)

= (V (t) − VCl)/RCl + C ·
V (t + dt) − V (t)

dt
,

(2.8)

and it is very important to make sure that we are balancing consistent quantities.
The conventional unit of current in the brain is one millionenth of an Ampere,
written “micro–ampere,” or µA for short.

1. The neuron’s chloride resistance, RCl, is the ratio of its membrane resistivity,
ρCl ≈ 10/3 kΩ · cm2, to the cell’s surface area, S ≈ 10−5 cm2.

2. A typical chloride reversal potential, VCl, is 70 mV , i.e., 70 millivolts.

3. A neuron’s capacitance, C, is the product of its membrane capacity Cm ≈
1 µF/cm2, i.e, 1 micro–farad per square centimeter, and its surface area, S.

The convential units for brain voltage and time are mV (milli-volts) and ms
(milli-seconds) respectively. Please confirm that (2.8) is indeed equating µA to
µA.

We typically rearrange (2.8) to express “the future in terms of the present,” i.e.,
we solve for V (t + dt) in terms of quantities at t,

V (t + dt) = (1 − dt/τ)V (t) + (dt/τ)VCl + (dt/C)Istim(t), (2.9)
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where τ = RClC is called the membrane time constant. This allows us to deduce
V (dt) from the known V (0), and from there to step from V (dt) to V (2dt) and so
on. Let us carry this out, with the parameter set above, along with

dt = 0.1 ms and Istim(t) = 10−5 · (t >= 0.5) · (t <= 1.5) µA.

The latter is using the Octave notation for truth functions to build a a 1 ms pulse
of current of amplitude 10−5 µA. The pulse turns on when t = 0.5 and off when
t = 1.5. Please confirm that (2.9) takes the concrete form

V (t + 0.1) = 0.97 · V (t) − 2.1 + 0.1 · (t >= 0.5) · (t <= 1.5), (2.10)

and so, commencing from V (0) = VCl = −70 we find, while t < 0.5, i.e., prior tothe
stimulus,

V (0.1) = V (0.2) = V (0.3) = V (0.4) = V (0.5) = −70,

while
V (0.6) = 0.97 · (−70) − 2.1 + 0.1 = −69.9

V (0.7) = 0.97 · (−69.9) − 2.1 + 0.1 = −69.803

V (0.8) = 0.97 · (−69.803) − 2.1 + 0.1 = −69.709

V (0.9) = 0.97 · (−69.709) − 2.1 + 0.1 = −69.618

V (1.0) = 0.97 · (−69.618) − 2.1 + 0.1 = −69.529

V (1.1) = 0.97 · (−69.529) − 2.1 + 0.1 = −69.443

V (1.2) = 0.97 · (−69.443) − 2.1 + 0.1 = −69.360

V (1.3) = 0.97 · (−69.360) − 2.1 + 0.1 = −69.279

V (1.4) = 0.97 · (−69.279) − 2.1 + 0.1 = −69.201

V (1.5) = 0.97 · (−69.201) − 2.1 + 0.1 = −69.125

V (1.6) = 0.97 · (−69.125) − 2.1 + 0.1 = −69.051

V (1.7) = 0.97 · (−69.051) − 2.1 = −69.079

V (1.8) = 0.97 · (−69.079) − 2.1 = −69.107

V (1.9) = 0.97 · (−69.107) − 2.1 = −69.134

V (2.0) = 0.97 · (−69.134) − 2.1 = −69.160

V (2.1) = 0.97 · (−69.160) − 2.1 = −69.185

We see the voltage rise during the pulse and then fall back after the pulse. The
substitutions into (2.10) are however tedious and error–prone. For such things
computers are very useful.
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2.2. Building the Neuron in Software

Lets see how to code (2.10) in Octave. We will accumulate time and voltage in
two vectors of the form

t = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, . . .)

V = (−70, −70, −70, −70, −70, −70, −69.9, . . .)

and then plot V vs. t. In the computer it is natural to use whole numbers to index
the elements of vectors. For example, the first element of t is t(1) and the third
element of V is V (3). In our Octave implementation of (2.10) we use n and our
growing index, and in order to grow it we place (2.10) inside of a for loop. Please
enter and run this program in Octave.

t(1) = 0;

V(1) = -70;

for n=1:150,

t(n+1) = n*0.1;

V(n+1) = 0.97*V(n) - 2.1 + 0.1*(t(n)>=0.5)*(t(n)<=1.5);

end

plot(t,V,’x’)

grid on

xlabel(’t (ms)’,’fontsize’,14)

ylabel(’V (mV)’,’fontsize’,14)
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Figure 2.5. (Left) The result of the simulation coded above. (Right) The result
of using a longer pulse. What did we change in the program?

How would we change the program to deliver a sinusoidal current rather than
a single pulse? How could we instead deliver a train of pulses? Experiment with
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vectors, for loops and plotting before proceeding.
Lets take a careful look at sinusoidal input, of frequency f and amplitude

10−4 µA, i.e.,
Istim(t) = 10−4 sin(2πft).

In this case our marching rule takes the form

V (t + dt) = (1 − dt/τ) ∗ V (t) + (dt/τ)VCl + sin(2πft).

With the parameter set as above, beginning from V (0) = −70 we find V (0.1) = −70
then

V (0.2) = −70 + sin(2πf/10)

V (0.3) = −70 + 0.97 ∗ sin(2πf/10) + sin(4πf/10)

V (0.4) = −70 + (0.97)2 ∗ sin(2πf/10) + 0.97 ∗ sin(4πf/10) + sin(6πf/10)

and we observe the pattern

V ((n + 2)/10) = −70 + a−n
n

∑

j=1

aj sin(jb), a = 1/0.97, b = 2πf/10.

This sum

Sn ≡
n

∑

j=1

aj sin(jb) (2.11)

is a fairly imposing object. Our objective is to demystify it by showing how it can
be summed by hand using no more than few trigonometry identities, each of which
we will derive from scratch.

The small n are easy

S1 = a sin(b) and S2 = a sin(b) + a2 sin(2b) = a sin(b) + 2a2 cos(b) sin(b).

Where we have used the lovely double angle formula sin(2b) = 2 sin(b) cos(b). Let
us begin with a derivation of the more general addition formula

sin(a + b) = sin(a) cos(b) + sin(b) cos(a) (2.12)

To “see” this formula we look to the left panel in Figure 2.5, where we have rotated
the unit segment AB first through angle a to AC then through b to AD. Please
note that

sin(a + b) = DE.

In the subsequent panel we drop a line from D that meets AC at a right angle at
F . From F we drop a vertical to G and horizontal to H.
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Figure 2.6. Initial (left) and final (right) constructions in the derivation of
(2.12).

From the right panel in Figure 2.6 you should be able to confirm

1. AF = cos(b).

2. a = ∠FDH.

3. sin(a) = (FG)/(AF ).

4. FG = sin(a) cos(b).

5. DF = sin(b).

6. cos(a) = (DH)/(DF ).

7. DH = cos(a) sin(b).

Finally, deduce (2.12) from sin(a + b) = DH + FG.

We note that the very same construction permits us to establish the addition
formula for cosine, namely,

cos(a + b) = cos(a) cos(b) − sin(a) sin(b). (2.13)

Recall that our goal is to sum the Sn in (2.11). Our next step is to use the angle
sum formula, (2.12), to deduce the lovely recurrence relation

sin(jb) = 2 cos(b) sin((j − 1)b) − sin((j − 2)b) (2.14)

valid for arbritrary b and integer j. To establish (2.14) we expand

sin((j − 1)b) = sin(jb) cos(b) − cos(jb) sin(b) (2.15)
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and

sin((j − 2)b) = sin(jb) cos(2b) − cos(jb) sin(2b)

= sin(jb)(2 cos2(b) − 1) − 2 cos(jb) sin(b) cos(b).
(2.16)

On multiplying (2.15) by 2 cos(b) and subtracting (2.16) we arrive at (2.14).
On substituting (2.14) into the definition of Sn, i.e., (2.11) we find

Sn = 2 cos(b)
n

∑

j=1

aj sin((j − 1)b) −
n

∑

j=1

aj sin((j − 2)b)

= 2 cos(b)
n

∑

j=2

aj sin((j − 1)b) + a sin(b) −
n

∑

j=3

aj sin((j − 2)b)

= a sin(b) + 2a cos(b)
n−1
∑

j=1

aj sin(jb) − a2

n−2
∑

j=1

aj sin(jb)

= a sin(b) + 2a cos(b)Sn−1 − a2Sn−2.

We pause to note that this gives us a relation between our sums at neighboring
values of n. More precisely, the Sn obey the difference equation

Sn = a sin(b) + 2a cos(b)Sn−1 − a2Sn−2. (2.17)

We first examine its steady state solution by supposing that Sn → S∞ as n → ∞,
in which case (2.17) takes the form

S∞ = a sin(b) + 2a cos(b)S∞ − a2S∞.

This we dispatch at once, with

S∞ =
a sin(b)

a2 − 2a cos(b) + 1
. (2.18)

With this term out of the way, we note the

Xn ≡ Sn − S∞

obey the simpler difference equation

Xn+2 = 2a cos(b)Xn+1 − a2Xn. (2.19)

If we make the hopeful guess that Xn = xn then (2.19) reduces to the simple
quadratic equation

x2 = 2a cos(b)x − a2. (2.20)
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The quadratic formula identifies the complex roots

x± =
2a cos(b) ±

√

4a2 cos2(b) − 4a2

2
= a(cos(b) ± i sin(b)),

where i ≡
√
−1 is the imaginary unit. We have illustrated these roots below
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Figure 2.7 The roots of (2.20) plotted in the complex plane.

We combine these roots, with complex weights, c±, to produce the general solu-
tion

Xn = c+xn
+ + c−xn

−.

The xn
± are extremely well behaved, for notice that

x2
+ = (cos(b) + i sin(b))(cos(b) + i sin(b))

= cos2(b) − sin2(b) + i2 sin(b) cos(b)

= cos(2b) + i sin(2b)

where the last step uses only (2.12) and (2.13). Continuing in this fashion we find
the lovely identities

xn
± = ((cos(b) ± i sin(b))n = cos(nb) ± i sin(nb). (2.21)

As xn
± are complex conjugates of one another (i.e., reflections of one another across

the real axis) and Xn is real it follows (can you prove it) that c± must also be
complex conjugates of one another. Writing c+ = α + iβ it follows that

Xn = 2an(α cos(nb) − β sin(nb)). (2.22)

The real α and β are then determined by the two real equations

X1 = S1 − S∞ and X2 = S2 − S∞

10



i.e., by

α cos(b) − β sin(b) =
sin(b)(a2 − 2a cos(b))

2(a2 − 2a cos(b) + 1)

α cos(2b) − β sin(2b) =
a sin(b) + 2 cos(b) sin(b)(a2 − 2a cos(b))

2(a2 − 2a cos(b) + 1)
.

(2.23)

On multiplying the first equation by cos(2b) and the second by − cos(b) and adding
we find

β =
a cos(b) − a2

2(a2 − 2a cos(b) + 1)
.

Conversely, on multiplying the first equation in (2.23) by sin(2b) and the second
by − sin(b) and adding we find

α =
−a sin(b)

2(a2 − 2a cos(b) + 1)

On substitution back into (2.22) we find

Xn =
an(a2 − a cos(b)) sin(nb) − an+1 sin(b) cos(nb)

a2 − 2a cos(b) + 1

and so

Sn = Xn + S∞ =
a sin(b) + an(a2 − a cos(b)) sin(nb) − an+1 sin(b) cos(nb)

a2 − 2a cos(b) + 1

and so

V ((n + 2)/10) = −70 +
a1−n sin(b) + (a2 − a cos(b)) sin(nb) − a sin(b) cos(nb)

a2 − 2a cos(b) + 1
.

Although explicit it is not an easy manner to “see” the weighted difference of
sin(nb) and cos(nb). To finish the story we need one more identity

c1 sin(θ) + c2 cos(θ) = A sin(θ + φ), A =
√

c2
1 + c2

2, tan φ = c1/c2. (2.24)

To derive this simply expand sin(θ + φ) via our angle sum formula, (2.12). Finally,
we arrive the exact representation

V ((n+2)/10) = −70+
a1−n sin(b)

a2 − 2a cos(b) + 1
+

a
√

a2 − 2a cos(b) + 1
sin(nb+φ), (2.25)

where
φ = tan−1((cos(b) − a)/ sin(b)).
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The first term is simply rest, the second is “evanescent” in the sense that it vanishes
for large n. The last term simply oscillates with amplitude captured by the gain
function

G(f) =
a

√

a2 − 2a cos(2πfdt) + 1
. (2.26)

We illustrate V and G below.
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Figure 2.8. (left) The response, (2.25), to a 50 HZ sine wave. (right) The Gain
function, (2.26), demonstrates that the circuit damps or attenuates high frequency
input.

2.3. Building the Neuron in Hardware

It is not a simple matter to deliver a prescribed current, Istim. We rather drive
a known, 672 Ω, resistor with the NI myDAQ Function Generator, and record its
response with the associated Oscilloscope.
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Figure 2.9 The red wire connects the Function Generator (pin AO 0) to the
(vertical) 672 Ω resistance. This serves as Istim into the membrane RC circuit,
R = 1.17 kΩ and C = 9.87 µF . On selected a 10 Hertz, 4 Volt peak-to-peak
square wave from the Function Generator, the Oscilloscope (black wire to pin AI
0+) captures the charge, plateau and discharge that we expect from our numerical
simulation. The green wire is to ground, and the small black jumper connects pin
AI 0- to ground.

We next switch from square to sine waves and note that peak-to-peak response
diminishes as we increase frequency. Please record, on a sheet of paper, the response
Vpp for frequencies 100, 101, 102, 103 and 104, and graph your results in Octave, like
that below. We define gain to be the ratio of the Vpp of the response to the Vpp
of the stimulus.
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Figure 2.10 The membrane circuit behaves like a low–pass filter. Compare to
Figure 2.8.

2.4. The Limiting Cell Equation and its Gain Function

Please check that if we define,

v(t) = V (t) − VCl

then (2.8) takes the simpler form

RIstim(t) = v(t) + τ
v(t + dt) − v(t)

dt
.

For those that have been exposed to calculus you might recognize that the difference
quotient

v(t + dt) − v(t)

dt
approaches the derivative v′(t)

as dt approaches 0. The limiting passive neuron equation is then

RIstim(t) = v(t) + τv′(t). (2.27)

There are many ways to analyze such a “differential equation.” To begin we will
demonstrate that if a sinusoid goes in then a sinusoid comes out. More precisely,
we suppose that

Istim(t) = I0(f) exp(2πift) and v(t) = V0(f) exp(2πift)

where f denotes frequency. (An Octave digression/appendix on exp(2πift) would
be nice, simply typing help plot3 gets you very far). On substituting these into
(2.27) we find

RI0(f) exp(2πift) = V0(f) exp(2πift) + (2πifτ)V0(f) exp(2πift)
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On canceling the common exponential we find

RI0(f) = (1 + 2πifτ)V0(f),

and rearrange slightly to arrive at the analytical Gain Function

G(f) ≡
|V0(f)|
|I0(f)|

=
1

R
√

1 + (2πfτ)2
.

As this function decreases as f increases we speak of the passive neuron as a “Low
Pass Filter.”
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