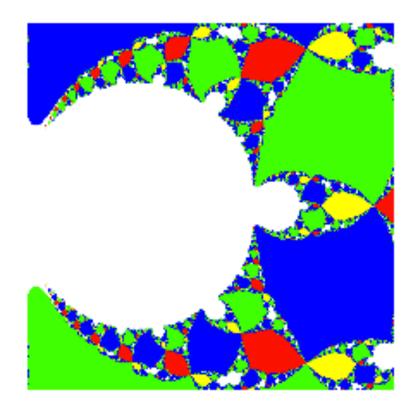
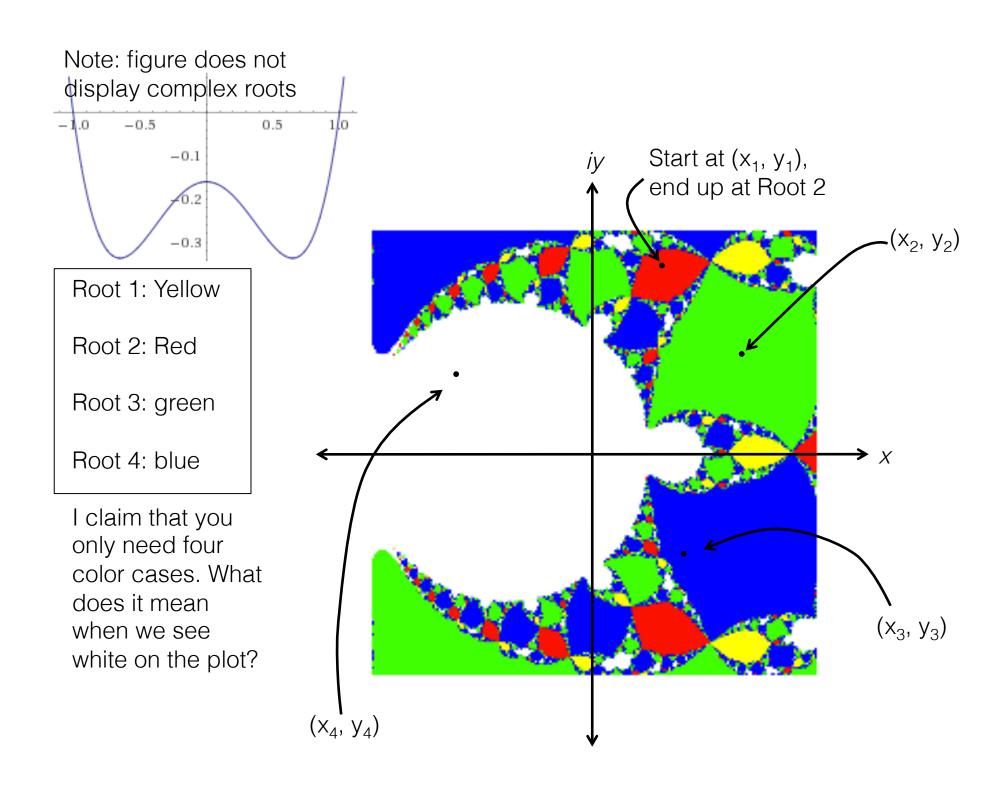
Newton Basins



qdrive Δ qnewt Δ myownpolyder

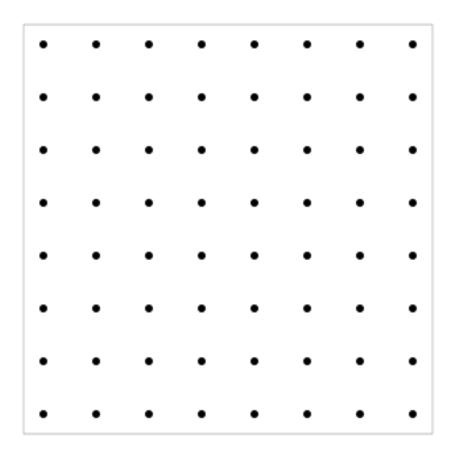


It would be extremely expensive to invoke a for loop and run through every point in the window.

In fact, unless we were working with a finite set of points, the loop would go on forever, and the picture would become more and more detailed

So we make a lattice that covers the plane (window specified by xt and yt) and perform Newton's method on all of the points at once!

Then we have a huge collection (matrix) of the roots that Newton's method finds for each starting point in the lattice.



Outline

```
function qdrive

*run qnewt on all 4 quartics*
return
```

```
function qnewt(q,xt,yt,maxiter)

*We will unpack this one*
return
```

function d=myownpolyder(q)

Write your own derivative-taking function (one-liner)
return

qdrive

function qdrive

return

all of the plotting is taken care of in qnewt! The driver really just specifies the quartics and the dimensions of the grid.

qnewt(q,xt,yt,maxiter)

Where are these specified?

function qnewt(q,xt,yt,maxiter)

- 1. create meshgrid
- 2. take derivative of your quising dq= mypolyder(q)
- 3. Run Newton on entire lattice at once

```
for k=1:maxiter,
   Z = Z - (Z.^2-1).*(Z.^2+0.16)./(4*Z.^3 - 1.68*Z); Why the '.'?
end
```

4. Find roots of q. There is a built-in MATLAB function for this:

$$R = roots(q);$$
 —

5. Use "find" to see which points in Z end up at which root, and plot in the corresponding colors (see next slide).

x = .15:.0025:.55;y = -.15:.0025:.15;[X,Y] = meshgrid(x,y);

Z = X+i*Y:

What are the numerator and denominator in terms of dq?

We know that there are 4 roots of q. So in what form must R be?

plotting in qnewt

R is a 1x4 vector of the roots of q.

We will evaluate each of these roots independently, and see which points in Z ended up at that root. ____ 0.1 is the

0.1 is the tolerance you will use

- 1 [i1,j1] = find(abs(Z-1)<0.1);
- 2. Plot: use indices i1 and j1 to access points in the x-y plane; color those points whatever color you like. Use markersize 1.
 - Hint for accessing points in the x-y plane: where have we discretized the plane/created a lattice? (see slide 8, step 1).
- 1 is an example root from the notes. How can we write each of the roots in terms of R for the four cases?

3. hold on, and repeat for the next 3 roots.

dq = myownpolyder(q)

$$2z^{4} - 4z^{3} + (2-i)z^{2} - iz + 10$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$q = [2 \qquad -4 \qquad (2-i) \qquad -i \qquad 10]$$

$$dq = [8 -12 4-2i -i]$$

How can we automate the process of arriving from q to dq? What same operations are performed *every time*?

dq = myownpolyder(q)

- -kill the last element of q
- -multiply the first four elements of q by the corresponding exponents [4 3 2 1]