
Cryptography

1
0
1
1
0
1
0
1
0
0
1
0
1
0
1
1
0

1
0
1
1
0
1
0
1
0

0
1
0
1
0
1
1
0

1
0
1
1
0
1
0
1

0
1
0
1
0
1
1
0

1
0
1
1
0
1
0
1

0
1
0
1
0
1
1
0

1
0
1
1
0
1
0
1

1
0
1
0
1
1
0

1
0
1
1
0
1
0
1

0
1
0
1
0
1
1
0

1
0
1
1
0
1

0
1
0
1
0
1
0
1
1
0

Project 7

Outline

1.  decoderdrive

2.  decoder

3.  downlow

4.  downlowinv

5.  loglike

Outline

1.  decoderdrive
- calls decoder once for each message, displays output

2.  decoder
 - decodes message using Metropolis Algorithm
3.  downlow
 - letters  numbers
4. downlowinv

 - numbers  letters
5.  loglike
 - computes likelihood of your guess given the inputted

text (message you’re trying to decode)

Metropolis Algorithm

First: letter pair probabilities (in
letterprob.dat, use load) and encoded
text (use fileread) need to be imported.

Generate an initial random guess:
 y = randperm(27)

To compare the encoded message to your
guess, you need to convert it to numbers

Metropolis Algorithm
First: letter pair probabilities (in letterprob.dat, use load) and

encoded text (use fileread) need to be imported.
 Generate an initial random guess, y = randperm(27).

Main loop:
 -consider a potential guess, ymaybe, obtained
by switching 2 random elements in y

 You have two possibilities for the next guess.
Either ynew = ymaybe, or no change is made
(ynew = y).

Metropolis Algorithm
First: letter pair probabilities (in letterprob.dat, use load) and encoded text

(use fileread) need to be imported. Generate initial random guess.

Main loop: (repeated 104 or 105 times)
 -consider a potential guess, ymaybe, obtained by switching 2 random
elements in y

 You have two possibilities for the next guess. Either ynew = ymaybe,
or no change is made (ynew = y).

 -Compute log likelihood of y and ymaybe.
 (a) loglike(ymaybe) > loglike(y)
  ynew = ymaybe with 100% probability
 (b) loglike(ymaybe) < loglike(y)
  ynew = ymaybe with probability =
 exp[-loglike(y) + loglike(ymaybe)],

 otherwise ynew = y (guess doesn’t change)

Metropolis Algorithm
First: letter pair probabilities (in letterprob.dat, use load) and encoded text

(use fileread) need to be imported. Generate initial random guess.

Main loop: (repeated 104 or 105 times)
 -consider a potential guess, ymaybe, obtained by switching 2 random
elements in y

 You have two possibilities for the next guess. Either ynew = ymaybe,
or no change is made (ynew = y).

 -Compute log likelihood of y and ymaybe.
 (a) loglike(ymaybe) > loglike(y)
  ynew = ymaybe with 100% probability
 (b) loglike(ymaybe) < loglike(y)
  ynew = ymaybe with probability =
 exp[-loglike(y) + loglike(ymaybe)],

 otherwise ynew = y (guess doesn’t change)
Display encrypted & decrypted messages

loglike function

likelihood = loglike(crypt, guess, M)

For each pair of subsequent letters in the
encrypted message (‘crypt’), find your
guess for those letters (in ‘guess’).

 Add the log of the corresponding element
in M to the sum.

downlow and lowdown

num = downlow(text) | letter= lowdowninv(num)

use “double” use “char”

