
Multi-layer Perceptron Networks
Our task is to tackle a class of problems that the simple perceptron cannot solve. Com-
plex perceptron networks not only carry some important information for neuroscience,
but are also useful in medical diagnostics, robotics, and the US Postal Service, where
they decode (even handwritten) mailing addresses.

We recall the binary output structure of the single-layer perceptron:

oj
“““ f ppp

n
ÿ
ÿ
ÿ

i“1

wixiqqq where f pθq “

#

1, if θ ą 0.
0, if θ ď 0.

(1)

and first ask whether the thresholding action of f pθq could be replaced with a more
accomodating function. We then outfit the network with a hidden layer that allows it to
solve more difficult classification problems.

Sigmoidal Neurons
Instead of returing a 1 for input ą 0 and a 0 for input ď 0, a sigmoidal threshold returns
non-binary output for inputs in a particular range. In the sigmoidal functions we will
consider, the parameter β determines the steepness of the sigmoid, or in other words,
the width of the range for which the output will lie somehwere between 1 and 0.

β = 0.5
β = 2

-5 0 5
0

0.5

1

θ

σ
(θ

)

-5 0 5
0

0.5

1

θ

f
(θ

)

β = 1

Sigmoidal Output Binary Output

Figure 1: Comparison of binary and sigmoidal thresholding functions. Notice in the sigmoidal
case that the range of inputs for which the output is not 1 or 0 is smaller for larger β.

σpθ, βq “ eβθ
{p1` eβθ

q (2)

Is one example of a sigmoid, and produces the sigmoidal thresholding function illus-
trated above.

1

Hidden Layer
We now add a hidden layer to our perceptron. Notice that the hidden neurons and final
output neuron are sigmoidal and not binary.

Layer 1

Input neuron n to
output neuron 2

o	

Figure 2: Two layer perceptron with (sigmoidal) hidden layer and sigmoidal output

The output at each layer (hidden and output) is calculated by passing a weighted sum of
inputs through the sigmoid function. Each hidden neuron sums its inputs multiplied by
their weights (θj “

řn
i“1 w1

i,jxi for hidden neuron j), then returns σpθjq as its output. The
process is repeated at the next layer: the output neuron sums the contributions of the
hidden neurons (outputs calculated at last step) multiplied by their weights, and passes
that sum through the sigmoid.

Next we ask how the weights are updated at each iteration of training. Recall that we are
working under the umbrella of supervised learning, where desired outputs are known
and we use the difference between current and desired outputs to update weight values.
The process in a multilayer network is more difficult than in a single layer network. With
a single layer, we could compare the actual output o to the desired output y, which is
known. In this more complicated scenario, we can compare y to the guess of the final
output neuron, but we cannot perform this comparison at the hidden layer because we
do not know what the output of each hidden neuron should be.

How do we handle the hidden neurons and layer 1 weights? We employ the method of
gradient descent. As this technique allows us to consider the effect of changing weights
in layer 1 on the output of layer 2, it is known in this context as back propagation. The
mathematics of the derivation using gradient descent on the square error are omitted
from the algorithm you will find on the following page. Inquire for details.

2

Step One: for input x “ rx1....xns, calculate output hj at each hidden layer neuron

hj “““ σppp
n

ÿ
ÿ
ÿ

i“1

w1
i,jxiqqq where σpθq “

1
1` e´βθ

(3)

Use β “ 1.

Step Two: for input h “ rh1...hjs from hidden layer, calculate output of output neuron

o “““ σppp
ÿ
ÿ
ÿ

j

w2
j hjqqq, (4)

where σpθq is the same as above. Note that w2
j indicates weights in layer 2, not squares.

Step Three: calculate δ2, which will be used to update layer 2 weights

δ2
“““ pppo ´́́ yqqqpppoqqqppp1 ´́́ oqqq (5)

because there is one output, δ2 is a scalar.

Step Four: calculate δ1, which will be used to update layer 1 weights

δ1
j “““ pppδ

2
qqqpppw2

j hjppp1 ´́́ hjqqqqqq (6)

because there are j hidden neuron outputs, δ1 is a j-vector.

Step Five: calculate ∆w2

∆w2
j “““ `δ2hj (7)

where ` is the learning rate. Use ` “ 0.1.

Step Six: calculate ∆w1

∆w1
i,j “““ `δ1

j xi (8)

∆w1
i,j can be conveniently stored in matrix form. If δ1 is a j by 1 vector and x is a 1 by i

vector, δ1 ˚ x will produce a matrix with j rows and i columns.

Step Seven: update layer 2 weights

w2
j “““ w2

j ´́́ ∆w2
j (9)

Step Eight: update layer 1 weights

w1
i,j “““ w1

i,j ´́́ ∆w1
i,j (10)

3

Project: Boolean Automator
You will train a perceptron with a sigmoidal hidden layer to solve all 16 Boolean oper-
ations on two input arguments. With a single-layer perceptron, we were able to solve
AND and OR problems, but not the nonlinearly separable XOR problem. Recall the
structure of XOR:

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

Table 1: XOR with two inputs

In their 1969 book Perceptrons: An Introduction to Computational Geometry, Marvin Minsky
and Seymour Papert prove that the addition of a hidden layer allows perceptrons to solve
such problems. In fact, the multi-layer perceptron described here can solve all possible
Boolean operations, with inputs x1,2 and desired output yi for i “ 1...16:

x1 x2 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 2: All Boolean operations on two inputs

You will write two functions:

booletron: a driver that runs multiperceptron on all 16 Boolean operations and checks
its accuracy by comparing its output [guess] to the desired output [y].

guess = multiperceptron(x,y), where input matrix [x] remains the same for all 16
operations and [y] varies. multiperceptron trains the perceptron to perform the
Boolean operation specified by [y] using the algorithm detailed previously and
returns the perceptron’s output after training.

A network with two input neurons, a single hidden layer containing two neurons, and
a single output neuron can solve the problem. However, you again need to add a ”bias
bit” in the form of another input neuron that always receives an input of 1. This can be
done by adding another column of ones to the matrix x.

You may want to keep track of the weights for layers 1 and 2 in two separate matrices.
You should initialize the weights using

4

W1 = 1 1 1 W2 = 1 -1.

1 1 1

Implementing the training algorithm for 105 iterations will suffice.

Because we are using a non-binary thresholding function and a reasonable number of
iterations to train, we do not expect the perceptron’s guess to perfectly match desired
(binary) output y. In application, outputs at a particular level of accuracy could be
rounded to match y. To check the accuracy of multiperceptron use Mean Squared
Error, via the function MSE. mse(guess-y) will do the trick. For each Boolean operator,
display the perceptron’s output, the desired output, and the Mean Squared Error. For
example, for the XOR output, booletron could print:

Perceptron output= 0.064756 0.94630 0.94387 0.068749

Desired output= 0 1 1 0

MSE = 0.0037385

Furthermore, for only the XOR problem, you will keep track of the perceptron’s accuracy
at each iteration of training. This can be achieved by calculating the absolute error of
the perceptron’s output (read: absolute value of the difference between the final output
and desired output). This will be a scalar value: remember that the desired output
changes based on the inputs at each iteration. After the final trial, create a figure like
that below displaying the convergence of the perceptron’s guess to the actual output
over the training period.

 0 100,000
0

0.7

Trial

E
rr

or

Perceptron Absolute Error: XOR

Figure 3: Absolute error of perceptron’s output over XOR training

5

Your work will be graded as follows:

5 pts for header containing detailed usage of each function

5 pts for further comments in code

2 pts for indentation

8 pts for correct driver booletron

10 pts for display of correct outputs and errors

15 pts for correct multiperceptron function

5 pts for correct error figure for XOR

6

