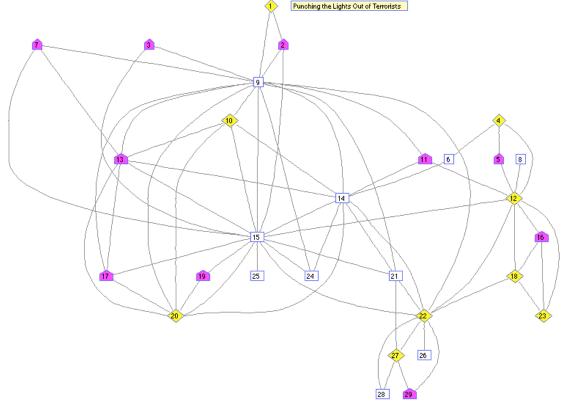
LIGHTS OUT!

Hamsini Sriraman

Purpose

- Solve the *Lights Out* puzzle using modular arithmetic
- Our initial condition is the network we used in the Social Networks lab
- Goal: figure out which 'buttons' to press to knock out all of the terrorists in the network



Functions

- Gaussp(A+I,-v) puts matrix in upper triangular form
 - A+I is adjacency matrix + identity matrix
 - -v is the initial condition of the network
 - Use mod command to make matrix entries 0 or 1
 - Skip columns with no remaining 1s
 - Delete rows which are all 0s
- Trisolve(A+I,-v) solves for the matrix given initial condition
 - Use mod command to make matrix entries 0 or 1

Modifications

- In gaussp, skip to next column when you encounter a bad column
 - Do not skip down to the next row (might skip entries that need to be row-reduced)

```
function x = gauss(S,f)
n = length(f);
S = [S | f] Augment S with f
for k=1:n-1 k counts columns
    r = row number, larger than or equal to k,
        with largest value (in magnitude) in column k
    if this largest value is really small then warn the user
    swap row r and row k
    for j=k+1:n
        mix row k into row j in order to eliminate S(j,k)
    end
end
if S(n,n) is really small then warn the user
strip off the changed f, i.e., copy column n+1 of S onto f
x = trisolve(S, f)
return
```

Modular Arithmetic

e ven"	" O	dd"		<i>→</i> /	"	e ven"
e ven "	"odd" "even"		and	"e ven"	"e ven" "e ven"	
o dd"	"e ven"			"odd"		
is the same as						
+	0	1		→/	0	1
0 1	0	1	and	0 1	0	0
1	1	0		1	0	1

 $1+1+1+1+1=5 \quad \mathscr{H} \quad 1 \mod 2$ $1+1+1+1+1=(1+1)+(1+1+1)=2+3 \ \mathscr{H} 0+1 \mod 2 \quad \mathscr{H} \quad 1 \mod 2$ $1+1+1+1+1=5 \ \mathscr{H} (1+1+1+1+1)=5 \ \mathscr{H} 1 \ \mathscr{H} 1 \ \mathsf{Mod} 2 \quad \mathscr{H} \quad 1 \mod 2$