LIGHTS OUT!

Hamsini Sriraman

Purpose

- Solve the Lights Out puzzle using modular arithmetic
- Our initial condition is the network we used in the Social Networks lab
- Goal: figure out which 'buttons' to press to knock out all of the terrorists in the network

Functions

- Gaussp(A+I,-v) - puts matrix in upper triangular form
- $\mathrm{A}+\mathrm{I}$ is adjacency matrix + identity matrix
- -v is the initial condition of the network
- Use mod command to make matrix entries 0 or 1
- Skip columns with no remaining 1s
- Delete rows which are all Os
- Trisolve $(A+I,-v)$ - solves for the matrix given initial condition
- Use mod command to make matrix entries 0 or 1

Modifications

- In gaussp, skip to next column when you encounter a bad column

- Do not skip down to the next row (might skip entries that need to be row-reduced)

```
function x = gauss(S,f)
```

n = length (f);
$\mathrm{S}=[\mathrm{S} \mid \mathrm{f}] \quad$ Augment S with f
for $k=1: n-1 \quad k$ counts columns
r = row number, larger than or equal to k,
with largest value (in magnitude) in column k
if this largest value is really small then warn the user
swap row r and row k
for $\mathrm{j}=\mathrm{k}+1$: n
mix row k into row j in order to eliminate $S(j, k)$
end
end
if $S(n, n)$ is really small then warn the user
strip off the changed f, i.e., copy column $n+1$ of S onto f
$\mathrm{x}=$ trisolve(S,f)
return

Modular Arithmetic

is the same as

+	0	1
0	0	1
1	1	0

\rightarrow	0	1
0	0	0
1	0	1

$1+1+1+1+1=5 \quad \mathscr{H} \quad 1 \quad \bmod 2$
$1+1+1+1+1=(1+1)+(1+1+1)=2+3 \mathscr{A} 0+1 \bmod 2 \mathscr{A} \quad 1 \bmod 2$
$1+1+1+1+1=5 /(1+1+1+1+1)=5 \nleftarrow \not \mathscr{A} 1 \leftrightarrow 1 \bmod 2 \mathscr{A} \quad 1 \bmod 2$

