Boolean Automator

Presented by: Maxwell B. Hasbrouck

The Problem

x_{1}	x_{2}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}							
1	1	0	1	0	1	0	1	y_{10}	y_{11}	y_{12}	y_{13}	y_{14}	y_{15}	y_{16}			
1	0	0	0	1	1	0	0	1	0	1	0	1	0	1	0	1	
0	1	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1
0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1										

Table 2: All Boolean operations on two inputs

Most operations can be handled by a single layer Perceptron, but XOR and Logical Bitconditional can't be

The Background

Figure 2: Two layer perceptron with (sigmoidal) hidden layer and sigmoidal output

The output at each layer (hidden and output) is calculated by passing a weighted sum of inputs through the sigmoid function. Each hidden neuron sums its inputs multiplied by their weights

Steps 1.4

Step One: for input $x=\left[x_{1} \ldots x_{n}\right]$, calculate output h_{j} at each hidden layer neuron

$$
\begin{equation*}
\boldsymbol{h}_{j}=\sigma\left(\sum_{i=1}^{n} w_{i, j}^{1} x_{i}\right) \text { where } \sigma(\theta)=\frac{1}{1+e^{-\beta \theta}} \tag{3}
\end{equation*}
$$

$$
\text { Use } \beta=1
$$

Step Two: for input $h=\left[h_{1} \ldots h_{j}\right]$ from hidden layer, calculate output of output neuron

$$
\begin{equation*}
o=\sigma\left(\sum_{j} w_{j}^{2} h_{j}\right) \tag{4}
\end{equation*}
$$

where $\sigma(\theta)$ is the same as above. Note that w_{j}^{2} indicates weights in layer 2 , not squares.
Step Three: calculate $\boldsymbol{\delta}^{\mathbf{2}}$, which will be used to update layer 2 weights

$$
\begin{equation*}
\delta^{2}=(o-y)(o)(1-o) \tag{5}
\end{equation*}
$$

because there is one output, δ^{2} is a scalar.
Step Four: calculate $\boldsymbol{\delta}^{1}$, which will be used to update layer 1 weights

$$
\begin{equation*}
\delta_{j}^{1}=\left(\delta^{2}\right)\left(w_{j}^{2} h_{j}\left(1-h_{j}\right)\right) \tag{6}
\end{equation*}
$$

because there are j hidden neuron outputs, δ^{1} is a j-vector.

Steps 5-8

Step Five: calculate Δw^{2}

$$
\begin{equation*}
\Delta w_{j}^{2}=\ell \delta^{2} h_{j} \tag{7}
\end{equation*}
$$

where ℓ is the learning rate. Use $\ell=0.1$.
Step Six: calculate Δw^{1}

$$
\begin{equation*}
\Delta w_{i, j}^{1}=\ell \delta_{j}^{1} x_{i} \tag{8}
\end{equation*}
$$

$\Delta w_{i, j}^{1}$ can be conveniently stored in matrix form. If δ^{1} is a j by 1 vector and x is a 1 by i vector, $\delta^{1} * x$ will produce a matrix with j rows and i columns.

Step Seven: update layer 2 weights

$$
\begin{equation*}
w_{j}^{2}=w_{j}^{2}-\Delta w_{j}^{2} \tag{9}
\end{equation*}
$$

Step Eight: update layer 1 weights

$$
\begin{equation*}
w_{i, j}^{1}=w_{i, j}^{1}-\Delta w_{i, j}^{1} \tag{10}
\end{equation*}
$$

Functions

booletron: a driver that runs multiperceptron on all 16 Boolean operations and checks its accuracy by comparing its output [guess] to the desired output [y].
guess $=$ multiperceptron (x, y), where input matrix $[x]$ remains the same for all 16 operations and [y] varies. multiperceptron trains the perceptron to perform the Boolean operation specified by [y] using the algorithm detailed previously and returns the perceptron's output after training.

