

Outline

function evodriver

- runs evo for values specified in notes
function evo(M,N,b,gen)
- calls score, advance, evodisp to play game and display colored matrices
- creates and plots fraction of cooperators plot
function $S=\operatorname{score}(A, b)$
- called at each iteration, calculates score of each player
function $A n=$ advance(S, A)
- called at each iteration, for every player finds the neighbor with the highest score, and changes the player's identity to the winning neighbor's identity
function evodisp(A, An)
- creates color "slice" matrix for display

Scoring

C vs. C -> each receives 1
C vs. $D \quad->\quad C$ receives 0 and D receives $b(b>1, b=1.9)$
Dvs. D -> each receives 0

- At each round, every player's score is calculated in this manner.
- Each player also plays themselves.
- Importantly, the players on the edges must play those on the opposite edges, as if the game board were wrapped unto itself so all of the edges met.

Advancing

- After the score is calculated at each round, each player takes the identity of the neighbor (including themselves) with the highest score on the last round. If the highest scorer was a defector, the player under consideration becomes a defector, etc.
-The grid is colored to represent the change in identity of each player at each iteration, as follows:

fine print: this is just an example.
Don't try to figure out the logic behind it - there isn't any.

How to color?

- using image on a matrix, for example image(M) will produce a colored plot such as those found in the notes.
-RGB triples can be used to encode the colors.
-The matrix has 3 "slices". In other words, it is a "stack" of the $m \times n$ matrices you have worked with in this class to date. Each slice encodes one of the R, G, or B values.

RGB: 001
RGB: 100

RGB: 110

RGB: 010

