
Lab 7: PageRank
(Ranking the Terrorists)

October 29, 2014
Sarah Schwettmann

Problems with the Predecessor

Mid ‘90’s: “popularity”-based, search
engines ranked results in terms of of
how many times each link was clicked.

  Positive feedback loop for top-ranked sites
 Waiting time for a significant number of clicks

Reformulation as a network problem
use the link structure of the internet itself to predict behavior

www.markrothko.org
www.rothkochapel.org

http://en.wikipedia.org/wiki/Mark_Rothko

www.nga.gov/rothko/

www.theartstory.org/rothko

Reformulation as a network problem
www.markrothko.org

links to

www.rothkochapel.org

Reformulation as a network problem
  Each webpage occupies a

node on a graph
  Edges of graph represent

links from one page to
another

  The graph is directed, where
there is an arrow pointing
from node i to node j if node i
links to node j.

  A “small” site could be highly
ranked if it has a lot of
important sites linking to it

PageRank Algorithm
Once the network is constructed, we can simulate the “walk” of a

web user across the graph and determine how many visits each
page will receive, based on its position on this graph.
The number of visits gives us the page rank.

At any give node, there are two possibilities for behavior, each with
a set probability of occurrence.

85% chance 15% chance

Move along directed edges to
a node linked to current node

Move randomly to any node in
network, including current node

1

2

3

4

5

6

7

8

Nodes:
 1
 4

Nodes:
 1
 2
 3
 4
 5
 6
 7
 8

Running through the simulation of user
navigation enough times for a significant

ranking system would be very computationally
intensive.

So…we are going to model the process using
matrices to speed things up.

For each node, as its rank, we seek the proportion of
visits to that node out of the network.

i

Let’s start with the probability that we arrived at node i at a particular step.

j

k

l

m

n

Probabilities of each way to arrive at node i, given that you start at another node
j i .85*(1/dj) + .15/n (dj = degree of node j = 3, n = total nodes = 6)
k i .85*(1/dk) + .15/n
l i .85*(1/dl) + .15/n
m i ?
n i ?
i i ?

We can either arrive at node
i from a node that is
connected to it (nodes j,
k, l), or from any random
node in the network.

i

j

k

l

m

n

Probabilities of each way to arrive at node i
j i .85*(1/dj) + .15/n (dj = degree of node j = 3, n = total nodes = 6)
k i .85*(1/dk) + .15/n
l i .85*(1/dl) + .15/n
m i .15/n
n i .15/n
i i .15/n

We can either arrive at node
i from a node that is
connected to it (nodes j,
k, l), or from any random
node in the network.

Importantly, we are doing this
recursively, so the
probability of going from
j i depends on the
probability we were at j to
begin with.

P(i) = P(ji)P(j) + P(ki)P(k) + P(li)P(l) + P(mi)P(m) + P(ni)P(i) + P(ii)P(i)

Constructing a Matrix Representation

P(ji)P(j) + P(ki)P(k) + P(li)P(l) + P(mi)P(m) + P(ni)P(i) + P(ii)P(i) = P(i)

P(ji) P(ki) P(li) P(mi) P(ni) P(ii)

P(j)

P(k)

P(l)

P(m)

P(n)

P(i)

P(j)

P(k)

P(l)

P(m)

P(n)

P(i)

…

Constructing a Matrix Representation

P(ji) P(ki) P(li) P(mi) P(ni) P(ii)

…

Construct a matrix R s.t.

col. j

row i

R

Solving for “rank” p of each node
P(ji)P(j) + P(ki)P(k) + P(li)P(l) + P(mi)P(m) + P(ni)P(i) + P(ii)P(i) = P(i)

P(ji) P(ki) P(li) P(mi) P(ni) P(ii)

P(j)

P(k)

P(l)

P(m)

P(n)

P(i)

P(j)

P(k)

P(l)

P(m)

P(n)

P(i)

…

R p p
Rp = p
Rp – p = 0
Rp – Ip = 0 (R – I)p = 0

We know R and I, so we
can solve for p using
Gaussian elimination!

Solving for p using gauss
(R – I)p = 0
Problem: there is no unique solution (e.g. we could have p = 0).
Solution: Augment (R-I) with a row of 1’s at the bottom.

p R-I 0

1 1 1 1 1 1 … 1 1

Then run p = gauss(A,z) to return the vector of ranks, p

A z

Project
Four functions:

 pagerankdriver
 reads the .txt terrorist file into MATLAB
 calls pagerankmatrix on the edgelist E to create R
 calls gauss on “doctored” R to solve for p
 uses pagerank p to create a biograph with nodes
 colored/shaped based on rank

 [p] = gauss(A,z)
 your own gaussian elimination code

 [p] = trisolve(A,z)
 back-substitution to complete gauss, provided in notes

 [R] = pagerankmatrix(E)
 your own code for creating R based on probabilities

This presentation is available at www.cogconfluence.com (under the CAAM 210,
Fall ‘14 tab)

