$x=\operatorname{gauss}(S, f)$

function $x=$ gauss (S,f)
$\mathrm{n}=$ length (f);
$\star \mathrm{S}=[\mathrm{S} \mid \mathrm{f}] \quad$ Augment S with f
for $k=1: n-1 \quad k$ counts columns

* 1. $\mathrm{r}=$ row number, larger than or equal to k , with largest value (in magnitude) in column k

2. if this largest value is really small then warn the user
3. swap row r and row $k \longrightarrow S([j k],:)=S([k j],:)$ for $\mathrm{j}=\mathrm{k}+1$: n

* mix row k into row j in order to eliminate $S(j, k)$ end
end

1. if $S(n, n)$ is really small then warn the user
2. strip off the changed f, i.e., copy column $n+1$ of S onto f
3. $\mathrm{x}=\mathrm{trisolve}(\mathrm{S}, \mathrm{f})$
return
4. $r=$ row number, larger than or equal to k, with largest value (in magnitude) in column k

If A is an n-by-n matrix and I look down column k and ask for the row number, at or below the diagonal, that contains the largest element, then I should type which one of the following choices to get the correct row number: rnum?
A. $[y$, rnum $]=\max (\operatorname{abs}(A(k: n, k)))$
B. $[y, r n u m]=\max (\operatorname{abs}(A(k: k: n)))$
C. $[y$, rnum $]=\max (a b s(A(k: n, k))$; rnum $=r n u m+k-1$;

```
1. r = row number, larger than or equal to k, with largest value (in magnitude) in column \(k\)
```

4	2	1	1
2	4	2	2
1	2	4	3

```
```

Saug =

```
Saug =
>> k
k =
    2
>> n
n =
3
>> [y,i] = max(abs(Saug(k:n,k)))
y =
```


mix row k into row j in order to eliminate $S(j, k)$

for $j=k+1: n$

$S(j,:)=S(j,:)+$ magicnumber*S $(k,:)$

end
before the following line, we need to calculate this magic number. What is it? (I claim it is a one-liner)
$\operatorname{row}_{\mathrm{j}}(\mathrm{where}$ we are trying to eliminate something $)=$ row $_{\mathrm{j}}+($ some multiple, m, of $)$ row $_{\mathrm{k}}$

$x=\operatorname{gauss}(S, f)$

```
    function x = gauss(S,f)
    n = length(f);
* S = [S | f] Augment S with f
    for k=1:n-1 k counts columns
    1. r = row number, larger than or equal to k,
        with largest value (in magnitude) in column k
    2. if this largest value is really small, then warn the user
    3. swap row r and row k
        for j=k+1:n
            * mix row k into row j in order to eliminate S(j,k)
        end
    end
1. if S(n,n) is really small then warn the user
2. strip off the changed f, i.e., copy column n+1 of S onto f
3. x = trisolve(S,f)
    return
```


$x=$ trisolve(S,f)

Backsubstitution code given in notes! Observe that S must be triangular.

$$
\begin{aligned}
& x=\operatorname{zeros}(n, 1) ; \\
& x(n)=f(n) / S(n, n) ; \\
& \text { for } j=n-1:-1: 1 \\
& \quad \operatorname{tmp}=0 ; \\
& \quad \text { for } k=j+1: n \\
& \quad \operatorname{tmp}=\operatorname{tmp}+S(j, k) * x(k) ; \\
& \quad \text { end } \\
& \quad x(j)=(f(j)-\operatorname{tmp}) / S(j, j) ;
\end{aligned}
$$

