
Evolutionary Game Theory

CAAM 210

Outline

function evodriver
 - runs evo for values specified in notes

function evo(M,N,b,gen)
 - calls score, advance, evodisp to play game and display colored matrices

 - creates and plots fraction of cooperators plot
function S = score(A, b)

 - called at each iteration, calculates score of each player
function An = advance(S, A)

 - called at each iteration, for every player finds the neighbor with the highest score, and
changes the player’s identity to the winning neighbor’s identity

function evodisp(A, An)
 - creates color “slice” matrix for display

Scoring

C D

C D
m

n

C vs. C -> each receives 1
C vs. D -> C receives 0 and D receives b (b > 1, b = 1.9)
D vs. D -> each receives 0

C D

D

C

C

C D

C D

C D

D

C

C

+1	 +0	 +0	

+1	

+0	

+0	

+1	 +1	

+1	

C scores 5
this round

  At each round, every player’s score is calculated in this manner.
  Each player also plays themselves.
  Players on the edges play fewer than central players

Advancing
  After the score is calculated at each round, each player takes the identity of the
neighbor (including themselves) with the highest score on the last round. If the
highest scorer was a defector, the player under consideration becomes a
defector, etc.
 The grid is colored to represent the change in identity of each player at each
iteration, as follows:

C remains C

D remains D

C becomes D

D becomes C
fine print: this is just an example.

Don’t try to figure out the logic
behind it – there isn’t any.

How to color?
  using image on a matrix, for example image(M) will produce a colored plot
such as those found in the notes.
 RGB triples can be used to encode the colors.
 The matrix has 3 “slices”. In other words, it is a “stack” of the m x n matrices
you have worked with in this class to date. Each slice encodes one of the R, G,
or B values.

RGB: 0 0 1

RGB: 1 0 0

RGB: 1 1 0

RGB: 0 1 0

>> M = rand(50,50,3);
>> image(M)

