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Abstract

Language models demonstrate remarkable capacity to
generalize representations learned in one modality to down-
stream tasks in other modalities. Can we trace this ability
to individual neurons? We study the case where a frozen
text transformer is augmented with vision using a self-
supervised visual encoder and a single linear adapter layer
learned on an image-to-text task. Outputs of the adapter are
not immediately decodable into language describing image
content; instead, we find that translation between modali-
ties occurs deeper within the transformer. We introduce a
procedure for identifying “multimodal neurons” that con-
vert visual representations into corresponding text, and de-
coding the concepts they inject into the model’s residual
stream. In a series of experiments, we show that multimodal
neurons operate on specific visual concepts across inputs,
and have a systematic causal effect on image captioning.
Project page: mmns.csail.mit.edu

1. Introduction
In 1688, William Molyneux posed a philosophical riddle

to John Locke that has remained relevant to vision science
for centuries: would a blind person, immediately upon gain-
ing sight, visually recognize objects previously known only
through another modality, such as touch [24, 30]? A pos-
itive answer to the Molyneux Problem would suggest the
existence a priori of ‘amodal’ representations of objects,
common across modalities. In 2011, vision neuroscien-
tists first answered this question in human subjects—no, im-
mediate visual recognition is not possible—but crossmodal
recognition capabilities are learned rapidly, within days af-
ter sight-restoring surgery [15]. More recently, language-
only artificial neural networks have shown impressive per-
formance on crossmodal tasks when augmented with addi-
tional modalities such as vision, using techniques that leave
pretrained transformer weights frozen [40, 7, 25, 28, 18].

Vision-language models commonly employ an image-
conditioned variant of prefix-tuning [20, 22], where a sep-

*Indicates equal contribution.

Figure 1. Multimodal neurons in transformer MLPs activate on
specific image features and inject related text into the model’s next
token prediction. Unit 2019 in GPT-J layer 14 detects horses.

arate image encoder is aligned to a text decoder with a
learned adapter layer. While Frozen [40], MAGMA [7],
and FROMAGe [18] all use image encoders such as CLIP
[33] trained jointly with language, the recent LiMBeR [28]
study includes a unique setting: one experiment uses the
self-supervised BEIT [2] network, trained with no linguistic
supervision, and a linear projection layer between BEIT and
GPT-J [43] supervised by an image-to-text task. This setting
is the machine analogue of the Molyneux scenario: the ma-
jor text components have never seen an image, and the ma-
jor image components have never seen a piece of text, yet
LiMBeR-BEIT demonstrates competitive image captioning
performance [28]. To account for the transfer of semantics
between modalities, are visual inputs translated into related
text by the projection layer, or does alignment of vision
and language representations happen inside the text trans-
former? In this work, we find:

1. Image prompts cast into the transformer embedding
space do not encode interpretable semantics. Transla-
tion between modalities occurs inside the transformer.

2. Multimodal neurons can be found within the trans-
former, and they are active in response to particular
image semantics.

3. Multimodal neurons causally affect output: modulat-
ing them can remove concepts from image captions.

https://mmns.csail.mit.edu


Figure 2. Top five multimodal neurons (layer L, unit u), for a sample image from 6 COCO supercategories. Superimposed heatmaps (0.95
percentile of activations) show mean activations of the top five neurons over the image. Gradient-based attribution scores are computed
with respect to the logit shown in bold in the GPT caption of each image. The two highest-probability tokens are shown for each neuron.

2. Multimodal Neurons
Investigations of individual units inside deep networks

have revealed a range of human-interpretable functions: for
example, color-detectors and Gabor filters emerge in low-
level convolutional units in image classifiers [8], and later
units that activate for object categories have been found
across vision architectures and tasks [44, 3, 31, 5, 16]. Mul-
timodal neurons selective for images and text with similar
semantics have previously been identified by Goh et al. [12]
in the CLIP [33] visual encoder, a ResNet-50 model [14]
trained to align image-text pairs. In this work, we show that
multimodal neurons also emerge when vision and language
are learned entirely separately, and convert visual represen-
tations aligned to a frozen language model into text.

2.1. Detecting multimodal neurons

We analyze text transformer neurons in the multimodal
LiMBeR model [28], where a linear layer trained on
CC3M [36] casts BEIT [2] image embeddings into the in-
put space (eL = 4096) of GPT-J 6B [43]. GPT-J transforms
input sequence x = [x1, . . . , xP ] into a probability distri-
bution y over next-token continuations of x [42], to create
an image caption (where P = 196 image patches). At layer
ℓ, the hidden state hℓ

i is given by hℓ−1
i + ai

ℓ +mi
ℓ, where

ai
ℓ and mi

ℓ are attention and MLP outputs. The output
of the final layer L is decoded using Wd for unembedding:
y = softmax(Wdh

L), which we refer to as decoder(hL).
Recent work has found that transformer MLPs encode

discrete and recoverable knowledge attributes [11, 6, 26,
27]. Each MLP is a two-layer feedforward neural network
that, in GPT-J, operates on hℓ−1

i as follows:

mi
ℓ = W ℓ

outGELU(W ℓ
inh

ℓ−1
i ) (1)

Motivated by past work uncovering interpretable roles of
individual MLP neurons in language-only settings [6], we
investigate their function in a multimodal context.

Attributing model outputs to neurons with image input.
We apply a procedure based on gradients to evaluate the
contribution of neuron uk to an image captioning task. This
approach follows several related approaches in neuron attri-
bution, such as Grad-CAM [35] and Integrated Gradients
[39, 6]. We adapt to the recurrent nature of transformer
token prediction by attributing neuron effects from image
patches to generated tokens in the caption, which may be
several transformer passes later. We assume the model is
predicting c as the most probable next token t, with logit
yc. We define the attribution score g of uk on token c after
a forward pass through image patches {1, . . . , p} and pre-
activation output Z, using the following equation:

gk,c = Zk
p

∂yc

∂Zk
p

(2)

This score is maximized when both the neuron’s output
and the effect of the neuron are large. It is a rough heuristic,
loosely approximating to first-order the neuron’s effect on
the output logit, compared to a baseline in which the neu-
ron is ablated. Importantly, this gradient can be computed
efficiently for all neurons using a single backward pass.

2.2. Decoding multimodal neurons

What effect do neurons with high gk,c have on model
output? We consider uk ∈ U ℓ, the set of first-layer MLP
units (|U ℓ| = 16384 in GPT-J). Following Equation 1 and
the formulation of transformer MLPs as key-value pairs
from [11], we note that activation Ak

i of uk contributes a
“value” from Wout to hi. After the first layer operation:

mi = WoutAi (3)

As Ak
i grows relative to Aj

i (where j ̸= k), the direc-
tion of mi approaches W k

outA
k
i , where W k

out is one row
of weight matrix Wout. As this vector gets added to the
residual stream, it has the effect of boosting or demoting



BERTScore (f) CLIPScore

shuffled .3627 21.74
multimodal neurons .3848 23.43
GPT captions .5251 23.62

Table 1. Language descriptions of multimodal neurons correspond
with image semantics and human annotations of images. Scores
are reported for a random subset of 1000 COCO validation images.
Each BERTScore is a mean across 5 human image annotations
from COCO. For each image, we record the max CLIPScore and
BERTScore per neuron, and report means across all images.

certain next-word predictions (see Figure 1). To decode the
language contribution of uk to model output, we can di-
rectly compute decoder(W k

out), following the simplifying
assumption that representations at any layer can be trans-
formed into a distribution over the token vocabulary using
the output embeddings [11, 10, 1, 34]. To evaluate whether
uk translates an image representation into semantically re-
lated text, we compare decoder(W k

out) to image content.

Do neurons translate image semantics into related text?
We evaluate on the MSCOCO-2017 [23] validation set,
where LiMBeR-BEIT produces image captions on par with
using CLIP as a visual encoder [28]. Following 2.1, we cal-
culate gk,c for uk across all layers with respect to the first
noun c in the generated caption, which directly follows the
image prompt and is less influenced by earlier token pre-
dictions. For the 100 uk with highest gk,c for each image,
we compute decoder(W k

out) to produce a list of the 10 most
probable language tokens uk contributes to the image cap-
tion. Restricting analyses to interpretable neurons (where
at least 7 of the top 10 tokens are words in the English dic-
tionary containing ≥ 3 letters) retains 50% of neurons with
high attribution scores. Further implementation details and
examples of interpretable and uninterpretable neurons for
randomly sampled images are provided in the Supplement.

We evaluate how well language contributions of mul-
timodal neurons correspond with image semantics by
measuring CLIPScore [17] relative to input images and
BERTScore [45] relative to COCO image annotations. Ta-
ble 1 shows that multimodal neurons perform competitively
with GPT-generated captions on CLIPScore, and outper-
form a baseline on BERTScore where language contribu-
tions are randomized across neurons (we do not expect
BERTScores comparable to GPT captions, as language con-
tributions are comma-separated lists of tokens).

Figure 2 shows example COCO images alongside top-
scoring multimodal neurons per image, and image regions
where the neurons are maximally active. Most top-scoring
neurons are found between layers 5 and 10 of GPT-J (L =
28; see Supplement), consistent with the finding from [26]
that MLP knowledge contributions occur in earlier layers.

Figure 3. CLIPScores for text-image pairs show no significant dif-
ference between decoded image prompts and random embeddings.
For image prompts, we report the mean across all image patches
as well as the distribution of max CLIPScores per image.

Random Prompts GPT COCO

CLIPScore 19.22 19.17 23.62 27.89
BERTScore .3286 .3291 .5251 .4470

Table 2. Image prompts are insignificantly different from ran-
domly sampled prompts on CLIPScore and BERTScore. Scores
for GPT captions and COCO nouns are shown for comparison.

3. Experiments
3.1. Does the projection layer translate images into

semantically related tokens?

We decode image prompts aligned to the GPT-J embed-
ding space into language, and measure their agreement with
the input image and its human annotations for 1000 ran-
domly sampled COCO images. As image prompts corre-
spond to vectors in the embedding space and not discrete
language tokens, we map them (and 1000 randomly sam-
pled vectors for comparison) onto the five nearest tokens
for analysis (see Figure 3 and Supplement). A Kolmogorov-
Smirnov test [19, 37] shows no significant difference (D =
.037, p > .5) between CLIPScore distributions comparing
real decoded prompts and random embeddings to images.
We compute CLIPScores for five COCO nouns per image
(sampled from human annotations) which show significant
difference (D > .9, p < .001) from image prompts.

We measure agreement between decoded image
prompts and ground-truth image descriptions by computing
BERTScores relative to human COCO annotations. Table 2
shows mean scores for real and random embeddings along-
side COCO nouns and GPT captions. Real and random
prompts are negligibly different, confirming that inputs to
GPT-J do not readily encode interpretable semantics.



Figure 4. Top-activating COCO images for two multimodal neu-
rons. Heatmaps (0.95 percentile of activations) illustrate consis-
tent selectivity for image regions translated into related text.

3.2. Is visual specificity robust across inputs?

A long line of interpretability research has shown that
evaluating alignment between individual units and seman-
tic concepts in images is useful for characterizing feature
representations in vision models [4, 5, 46, 16]. Approaches
based on visualization and manual inspection (see Figure 4)
can reveal interesting phenomena, but scale poorly.

We quantify the selectivity of multimodal neurons for
specific visual concepts by measuring the agreement of their
receptive fields with COCO instance segmentations, follow-
ing [3]. We simulate the receptive field of uk by comput-
ing Ak

i on each image prompt xi ∈ [x1, ..., xP ], reshap-
ing Ak

i into a 14 × 14 heatmap, and scaling to 224 × 224
using bilinear interpolation. We then threshold activations
above the 0.95 percentile to produce a binary mask over the
image, and compare this mask to COCO instance segmen-
tations using Intersection over Union (IoU). To test speci-
ficity for individual objects, we select 12 COCO categories

Figure 5. Across 12 COCO categories, the receptive fields of mul-
timodal neurons better segment the concept in each image than
randomly sampled neurons in the same layers. The Supplement
provides additional examples.

Figure 6. Ablating multimodal neurons degrades image caption
content. We plot the effect of ablating multimodal neurons ordered
by gk,c and randomly sampled units in the same layers (left), and
show an example (right) of the effect on a single image caption.

with single object annotations, and show that across all cat-
egories, the receptive fields of multimodal neurons better
segment the object in each image than randomly sampled
neurons from the same layers (Figure 5). While this exper-
iment shows that multimodal neurons are reliable detectors
of concepts, we also test whether they are selectively ac-
tive for images containing those concepts, or broadly active
across images. Results in the Supplement show preferential
activation on particular categories of images.

3.3. Do multimodal neurons causally affect output?

To investigate how strongly multimodal neurons causally
affect model output, we successively ablate units sorted by
gk,c and measure the resulting change in the probability
of token c. Results for all COCO validation images are
shown in Figure 6, for multimodal neurons (filtered and un-
filtered for interpretability), and randomly selected units in
the same layers. When up to 6400 random units are ablated,
we find that the probability of token c is largely unaffected,
but ablating the same number of top-scoring units decreases
token probability by 80% on average. Ablating multimodal
neurons also leads to significant changes in the semantics
of GPT-generated captions. Figure 6 shows one example;
additional analysis is provided in the Supplement.

4. Conclusion

We find multimodal neurons in text-only transformer
MLPs and show that these neurons consistently translate
image semantics into language. Interestingly, soft-prompt
inputs to the language model do not map onto interpretable
tokens in the output vocabulary, suggesting translation be-
tween modalities happens inside the transformer. The ca-
pacity to align representations across modalities could un-
derlie the utility of language models as general-purpose in-
terfaces for tasks involving sequential modeling [25, 13, 38,
29], ranging from next-move prediction in games [21, 32]
to protein design [41, 9]. Understanding the roles of indi-
vidual computational units can serve as a starting point for
investigating how transformers generalize across tasks.
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Supplemental Materials for Multimodal Neurons in Pretrained Text-Only
Transformers

S.1. Implementation details
We follow the LiMBeR process for augmenting pre-

trained GPT-J with vision as described in Merullo et al.
(2022). Each image is resized to (224, 224) and encoded
into a sequence [i1, ..., ik] by the image encoder E, where
k = 196 and each i corresponds to an image patch of size
(16, 16). We use self-supervised BEIT as E, trained with
no linguistic supervision, which produces [i1, ..., ik] of di-
mensionality 1024. To project image representations i into
the transformer-defined embedding space of GPT-J, we use
linear layer P from Merullo et al. (2022), trained on an
image-to-text task (CC3M image captioning). P transforms
[i1, ..., ik] into soft prompts [x1, ..., xk] of dimensionality
4096, which we refer to as the image prompt. Following
convention from SimVLM, MAGMA and LiMBeR, we ap-
pend the text prefix “A picture of” after every every image
prompt. Thus for each image, GPT-J receives as input a
(199, 4096) prompt and outputs a probability distribution y
over next-token continuations of that prompt.

To calculate neuron attribution scores, we generate a cap-
tion for each image by sampling from y using temperature
T = 0, which selects the token with the highest probability
at each step. The attribution score gk,c of neuron k is then
calculated with respect to token c, where c is the first noun
in the generated caption. In the rare case where this noun is
comprised of multiple tokens, we let c be the first of these
tokens. This attribution score lets us rank multimodal neu-
rons by how much they contribute to the crossmodal image
captioning task.

S.2. Example multimodal neurons
Table S.1 shows additional examples of multimodal neu-

rons detected and decoded for randomly sampled images
from the COCO 2017 validation set. The table shows the
top 20 neurons across all MLP layers for each image. In
analyses where we filter for interpretable neurons that cor-
respond to objects or object features in images, we remove
neurons that decode primarily to word fragments or punc-
tuation. Interpretable units (units where at least 7 of the top
10 tokens are words in the SCOWL English dictionary, for
en-US or en-GB, with ≥ 3 letters) are highlighted in bold.

S.3. Evaluating agreement with image captions
We use BERTScore (f) as a metric for evaluating how

well a list of tokens corresponds to the semantic content
of an image caption. Section 2.2 uses this metric to evalu-
ate multimodal neurons relative to ground-truth human an-
notations from COCO, and Section 3.1 uses the metric to

determine whether projection layer P translates [i1, ..., ik]
into [x1, ..., xk] that already map visual features onto re-
lated language before reaching transformer MLPs. Given
that [x1, ..., xk] do not correspond to discrete tokens, we
map each x onto the 5 token vectors with highest cosine
similarity in the transformer embedding space for analysis.

Table S.2 shows example decoded soft prompts for a ran-
domly sampled COCO image. For comparison, we sample
random vectors of size 4096 and use the same procedure
to map them onto their nearest neighbors in the GPT-J em-
bedding space. BERTScores for the random soft prompts
are shown alongside scores for the image soft prompts. The
means of these BERTScores, as well as the maximum val-
ues, are indistinguishable for real and random soft prompts
(see Table S.2 for a single image and Figure 3 in the main
paper for the distribution across COCO images). Thus we
conclude that P produces image prompts that fit within the
GPT-J embedding space, but do not already map image fea-
tures onto related language: this occurs deeper inside the
transformer. Consistent with this finding, BERTScores for
decoded multimodal neurons are higher than for the image
prompts, see Table 1 in the main paper.

S.4. Selectivity of multimodal neurons
Figure S.2 shows additional examples of activation

masks of individual multimodal neurons over COCO val-
idation images, and IoU scores comparing each activation
mask with COCO object annotations.

If multimodal neuron k is selective for the images it de-
scribes (and not, for instance, for many images), then we
expect greater Ak

xi
on images where it relevant to the cap-

tion than on images where it is irrelevant. It is conceivable
that our method merely extracts a set of high-activating neu-
rons, not a set of neurons that are selectively active on the
inputs we claim they are relevant to captioning.

We select 10 diverse ImageNet classes (see Figure S.3)
and compute the top 100 scoring units per image on each
of 200 randomly sampled images per class in the ImageNet
training set, filtered for interpretable units. Then for each
class, we select the 20 units that appear in the most im-
ages for that class. We measure the mean activation of these
units across all patches in the ImageNet validation images
for each of the 10 classes. Figure S.3(a) shows the compari-
son of activations across each of the categories. We find that
neurons activate more frequently on images in their own
category than for others. This implies that our pipeline does
not extract a set of general visually attentive units, but rather
units that are specifically tied to image semantics.



Images Layer.unit Patch Decoding (top 5 tokens) Attr. score

L7.u15772 119 ‘ animals’, ‘ embryos’, ‘ kittens’, ‘ mammals’, ‘ eggs’ 0.0214
L5.u4923 119 ‘ birds’, ‘ cages’, ‘ species’, ‘ breeding’, ‘ insects’ 0.0145
L7.u12134 119 ‘ aircraft’, ‘ flight’, ‘ airplanes’, ‘ Flight’, ‘ Aircraft’ 0.0113
L5.u4888 119 ‘ Boat’, ‘ sails’, ‘voy’, ‘ boats’, ‘ ships’ 0.0085
L7.u5875 119 ‘ larvae’, ‘ insects’, ‘ mosquitoes’, ‘ flies’, ‘ species’ 0.0083
L8.u2012 105 ‘ whales’, ‘ turtles’, ‘ whale’, ‘ birds’, ‘ fishes’ 0.0081
L7.u3030 119 ‘ Island’, ‘ island’, ‘ Islands’, ‘ islands’, ‘ shore’ 0.0078
L7.u14308 119 ‘uses’, ‘ dec’, ‘bill’, ‘oid’, ‘FS’ 0.0078
L9.u12771 119 ‘ satellites’, ‘ Flight’, ‘ orbiting’, ‘ spacecraft’, ‘ ship’ 0.0075
L4.u12317 119 ‘ embryos’, ‘ chicken’, ‘ meat’, ‘ fruits’, ‘ cows’ 0.0071
L8.u2012 119 ‘ whales’, ‘ turtles’, ‘ whale’, ‘ birds’, ‘ fishes’ 0.0062
L5.u4530 119 ‘ herds’, ‘ livestock’, ‘ cattle’, ‘ herd’, ‘ manure’ 0.0056
L5.u4923 105 ‘ birds’, ‘ cages’, ‘ species’, ‘ breeding’, ‘ insects’ 0.0055
L6.u8956 119 ‘ virus’, ‘ strains’, ‘ infect’, ‘ viruses’, ‘ parasites’ 0.0052
L7.u2159 105 ‘ species’, ‘species’, ‘ bacteria’, ‘ genus’, ‘ Species’ 0.0051
L10.u4819 119 ‘çĶ°’, ‘¬¼’, ‘”””’, ‘ Marketable’, ‘å§’ 0.0051
L5.u4923 118 ‘ birds’, ‘ cages’, ‘ species’, ‘ breeding’, ‘ insects’ 0.0050
L10.u927 3 ‘onds’, ‘rog’, ‘lys’, ‘arrow’, ‘ond’ 0.0050
L11.u7635 119 ‘ birds’, ‘birds’, ‘ butterflies’, ‘ kittens’, ‘ bird’ 0.0049
L9.u15445 119 ‘ radar’, ‘ standby’, ‘ operational’, ‘ flight’, ‘ readiness’ 0.0048

L5.u15728 119 ‘ playoff’, ‘ players’, ‘ teammate’, ‘ player’, ‘Players’ 0.0039
L12.u11268 113 ‘elson’, ‘ISA’, ‘Me’, ‘PRES’, ‘SO’ 0.0039
L5.u9667 119 ‘ workouts’, ‘ workout’, ‘ Training’, ‘ trainer’, ‘ exercises’ 0.0034
L9.u15864 182 ‘lihood’, ‘/**’, ‘Advertisements’, ‘.”.’, ‘”””’ 0.0034
L9.u9766 119 ‘ soccer’, ‘ football’, ‘ player’, ‘ baseball’, ‘player’ 0.0033
L10.u4819 182 ‘çĶ°’, ‘¬¼’, ‘”””’, ‘ Marketable’, ‘å§’ 0.0033
L18.u15557 150 ‘imer’, ‘ohan’, ‘ellow’, ‘ims’, ‘gue’ 0.0032
L12.u6426 160 ‘â¢’, ‘ Â®’, ‘ syndrome’, ‘ Productions’, ‘ Ltd’ 0.0032
L8.u15435 119 ‘ tennis’, ‘ tournaments’, ‘ tournament’, ‘ golf’, ‘ racing’ 0.0032
L11.u4236 75 ‘ starring’, ‘ played’, ‘ playable’, ‘ Written’, ‘ its’ 0.0031
L8.u6207 119 ‘ player’, ‘ players’, ‘ Player’, ‘Ä’, ‘ talent’ 0.0031
L6.u5975 119 ‘ football’, ‘ soccer’, ‘ basketball’, ‘ Soccer’, ‘ Football’ 0.0030
L2.u10316 75 ‘ı̈’, ‘/**’, ‘Q’, ‘The’, ‘//’ 0.0028
L12.u8390 89 ‘etheless’, ‘viously’, ‘theless’, ‘bsite’, ‘terday’ 0.0028
L5.u7958 89 ‘ rugby’, ‘ football’, ‘ player’, ‘ soccer’, ‘ footballer’ 0.0028
L20.u9909 89 ‘ Associates’, ‘ Alt’, ‘ para’, ‘ Lt’, ‘ similarly’ 0.0026
L5.u8219 75 ‘ portion’, ‘ regime’, ‘ sector’, ‘ situation’, ‘ component’ 0.0026
L11.u7264 75 ‘ portion’, ‘ finale’, ‘ environment’, ‘iest’, ‘ mantle’ 0.0026
L20.u452 103 ‘ CLE’, ‘ plain’, ‘ clearly’, ‘ Nil’, ‘ Sullivan’ 0.0026
L7.u16050 89 ‘pc’, ‘IER’, ‘ containing’, ‘ formatted’, ‘ supplemented’ 0.0026

L10.u927 73 ‘onds’, ‘rog’, ‘lys’, ‘arrow’, ‘ond’ 0.0087
L5.u9667 101 ‘ workouts’, ‘ workout’, ‘ Training’, ‘ trainer’, ‘ exercises’ 0.0081
L9.u3561 73 ‘ mix’, ‘ CRC’, ‘ critically’, ‘ gulf’, ‘ mechanically’ 0.0076
L9.u5970 73 ‘ construct’, ‘ performance’, ‘ global’, ‘ competing’, ‘ transact’ 0.0054
L10.u562 73 ‘ prev’, ‘ struct’, ‘ stable’, ‘ marg’, ‘ imp’ 0.0054
L6.u14388 87 ‘ march’, ‘ treadmill’, ‘ Championships’, ‘ racing’, ‘ marathon’ 0.0052
L14.u10320 73 ‘ print’, ‘ handle’, ‘ thing’, ‘catch’, ‘error’ 0.0051
L9.u3053 73 ‘essel’, ‘ked’, ‘ ELE’, ‘ument’, ‘ue’ 0.0047
L5.u4932 73 ‘eman’, ‘rack’, ‘ago’, ‘anne’, ‘ison’ 0.0046
L9.u7777 101 ‘dr’, ‘thur’, ‘tern’, ‘mas’, ‘mass’ 0.0042
L6.u16106 73 ‘umble’, ‘archives’, ‘room’, ‘ decentral’, ‘Root’ 0.0040
L5.u14519 73 ‘ abstract’, ‘ global’, ‘map’, ‘exec’, ‘kernel’ 0.0039
L11.u10405 73 ‘amed’, ‘elect’, ‘1’, ‘vol’, ‘vis’ 0.0038
L9.u325 87 ‘ training’, ‘ tournaments’, ‘ango’, ‘ ballet’, ‘ gymn’ 0.0038
L6.u14388 101 ‘ march’, ‘ treadmill’, ‘ Championships’, ‘ racing’, ‘ marathon’ 0.0038
L7.u3844 101 ‘DERR’, ‘Charges’, ‘wana’, ‘¬¼’, ‘verages’ 0.0036
L9.u15864 101 ‘lihood’, ‘/**’, ‘Advertisements’, ‘.”.’, ‘”””’ 0.0036
L7.u3330 101 ‘ Officers’, ‘ officers’, ‘ patrolling’, ‘ patrols’, ‘ troops’ 0.0036
L8.u8807 73 ‘ program’, ‘ updates’, ‘ programs’, ‘ document’, ‘ format’ 0.0034
L6.u12536 87 ‘ ankles’, ‘ joints’, ‘ biome’, ‘ injuries’, ‘ injury’ 0.0034



Images Layer.unit Patch Decoding (top 5 tokens) Attr. score

L8.u14504 13 ‘ upstairs’, ‘ homeowners’, ‘ apartments’, ‘ houses’, ‘ apartment’ 0.0071
L13.u15107 93 ‘ meals’, ‘ meal’, ‘ dinner’, ‘ dishes’, ‘ cuisine’ 0.0068
L8.u14504 93 ‘ upstairs’, ‘ homeowners’, ‘ apartments’, ‘ houses’, ‘ apartment’ 0.0052
L8.u14504 150 ‘ upstairs’, ‘ homeowners’, ‘ apartments’, ‘ houses’, ‘ apartment’ 0.0048
L9.u4691 13 ‘ houses’, ‘ buildings’, ‘ dwellings’, ‘ apartments’, ‘ homes’ 0.0043
L8.u13681 93 ‘ sandwiches’, ‘ foods’, ‘ salad’, ‘ sauce’, ‘ pizza’ 0.0041
L12.u4638 93 ‘ wash’, ‘ Darkness’, ‘ Caps’, ‘ blush’, ‘ Highest’ 0.0040
L9.u3561 93 ‘ mix’, ‘ CRC’, ‘ critically’, ‘ gulf’, ‘ mechanically’ 0.0040
L7.u5533 93 ‘bags’, ‘Items’, ‘ comprehens’, ‘ decor’, ‘bag’ 0.0039
L9.u8687 93 ‘ eaten’, ‘ foods’, ‘ food’, ‘ diet’, ‘ eating’ 0.0037
L12.u4109 93 ‘ Lakes’, ‘ Hof’, ‘ Kass’, ‘ Cotton’, ‘Council’ 0.0036
L8.u943 93 ‘ Foods’, ‘Food’, ‘let’, ‘ lunch’, ‘commercial’ 0.0036
L5.u16106 93 ‘ware’, ‘ halls’, ‘ salt’, ‘WARE’, ‘ mat’ 0.0032
L8.u14504 143 ‘ upstairs’, ‘ homeowners’, ‘ apartments’, ‘ houses’, ‘ apartment’ 0.0032
L9.u11735 93 ‘ hysterical’, ‘ Gould’, ‘ Louie’, ‘ Gamble’, ‘ Brown’ 0.0031
L8.u14504 149 ‘ upstairs’, ‘ homeowners’, ‘ apartments’, ‘ houses’, ‘ apartment’ 0.0031
L5.u2771 93 ‘ occupations’, ‘ industries’, ‘ operations’, ‘ occupational’, ‘ agriculture’ 0.0029
L9.u15864 55 ‘lihood’, ‘/**’, ‘Advertisements’, ‘.”.’, ‘”””’ 0.0028
L9.u4691 149 ‘ houses’, ‘ buildings’, ‘ dwellings’, ‘ apartments’, ‘ homes’ 0.0028
L7.u10853 13 ‘ boutique’, ‘ firm’, ‘ Associates’, ‘ restaurant’, ‘ Gifts’ 0.0028

L8.u15435 160 ‘ tennis’, ‘ tournaments’, ‘ tournament’, ‘ golf’, ‘ racing’ 0.0038
L1.u15996 132 ‘276’, ‘PS’, ‘ley’, ‘room’, ‘ Will’ 0.0038
L5.u6439 160 ‘ ge’, ‘ fibers’, ‘ hair’, ‘ geometric’, ‘ ori’ 0.0037
L9.u15864 160 ‘lihood’, ‘/**’, ‘Advertisements’, ‘.”.’, ‘”””’ 0.0034
L12.u2955 160 ‘Untitled’, ‘Welcome’, ‘========’, ‘Newsletter’, ‘====’ 0.0033
L12.u2955 146 ‘Untitled’, ‘Welcome’, ‘========’, ‘Newsletter’, ‘====’ 0.0032
L7.u2688 160 ‘rection’, ‘itud’, ‘ Ratio’, ‘lat’, ‘ ratio’ 0.0031
L8.u4372 160 ‘ footage’, ‘ filmed’, ‘ filming’, ‘ videos’, ‘ clips’ 0.0029
L10.u4819 146 ‘çĶ°’, ‘¬¼’, ‘”””’, ‘ Marketable’, ‘å§’ 0.0029
L8.u15435 93 ‘ tennis’, ‘ tournaments’, ‘ tournament’, ‘ golf’, ‘ racing’ 0.0029
L8.u15435 146 ‘ tennis’, ‘ tournaments’, ‘ tournament’, ‘ golf’, ‘ racing’ 0.0029
L10.u927 132 ‘onds’, ‘rog’, ‘lys’, ‘arrow’, ‘ond’ 0.0027
L9.u15864 146 ‘lihood’, ‘/**’, ‘Advertisements’, ‘.”.’, ‘”””’ 0.0026
L1.u8731 132 ‘ âĢ¦’, ‘ [âĢ¦]’, ‘âĢ¦’, ‘ ...’, ‘ Will’ 0.0025
L8.u16330 160 ‘ bouncing’, ‘ hitting’, ‘ bounce’, ‘ moving’, ‘ bounced’ 0.0025
L9.u1908 146 ‘ members’, ‘ country’, ‘ VIII’, ‘ Spanish’, ‘ 330’ 0.0024
L10.u4819 160 ‘çĶ°’, ‘¬¼’, ‘”””’, ‘ Marketable’, ‘å§’ 0.0024
L11.u14710 160 ‘Search’, ‘Follow’, ‘Early’, ‘Compar’, ‘Category’ 0.0024
L6.u132 160 ‘ manually’, ‘ replace’, ‘ concurrently’, ‘otropic’, ‘ foregoing’ 0.0024
L7.u5002 160 ‘ painting’, ‘ paintings’, ‘ sculpture’, ‘ sculptures’, ‘ painted’ 0.0024



Images Layer.unit Patch Decoding (top 5 tokens) Attr. score

L5.u13680 132 ‘ driver’, ‘ drivers’, ‘ cars’, ‘heading’, ‘cars’ 0.0091
L11.u9566 132 ‘ traffic’, ‘ network’, ‘ networks’, ‘ Traffic’, ‘network’ 0.0090
L12.u11606 132 ‘ chassis’, ‘ automotive’, ‘ design’, ‘ electronics’, ‘ specs’ 0.0078
L7.u6109 132 ‘ automobile’, ‘ automobiles’, ‘ engine’, ‘ Engine’, ‘ cars’ 0.0078
L6.u11916 132 ‘ herd’, ‘loads’, ‘ racing’, ‘ herds’, ‘ horses’ 0.0071
L8.u562 132 ‘ vehicles’, ‘ vehicle’, ‘ cars’, ‘veh’, ‘ Vehicles’ 0.0063
L7.u3273 132 ‘ride’, ‘ riders’, ‘ rides’, ‘ ridden’, ‘ rider’ 0.0062
L13.u5734 132 ‘ Chevrolet’, ‘ Motorsport’, ‘ cars’, ‘ automotive’, ‘ vehicle’ 0.0062
L8.u2952 132 ‘ rigging’, ‘ valves’, ‘ nozzle’, ‘ pipes’, ‘ tubing’ 0.0059
L13.u8962 132 ‘ cruising’, ‘ flying’, ‘ flight’, ‘ refuel’, ‘ Flying’ 0.0052
L9.u3561 116 ‘ mix’, ‘ CRC’, ‘ critically’, ‘ gulf’, ‘ mechanically’ 0.0051
L13.u107 132 ‘ trucks’, ‘ truck’, ‘ trailer’, ‘ parked’, ‘ driver’ 0.0050
L14.u10852 132 ‘Veh’, ‘ driver’, ‘ automotive’, ‘ automakers’, ‘Driver’ 0.0049
L6.u1989 132 ‘text’, ‘light’, ‘TL’, ‘X’, ‘background’ 0.0049
L2.u14243 132 ‘ousel’, ‘ Warriors’, ‘riages’, ‘illion’, ‘Ord’ 0.0048
L5.u6589 132 ‘ vehicles’, ‘ motorcycles’, ‘ aircraft’, ‘ tyres’, ‘ cars’ 0.0046
L7.u4574 132 ‘ plants’, ‘ plant’, ‘ roof’, ‘ compost’, ‘ wastewater’ 0.0045
L7.u6543 132 ‘ distance’, ‘ downhill’, ‘ biking’, ‘ riders’, ‘ journeys’ 0.0045
L16.u9154 132 ‘ driver’, ‘ drivers’, ‘ vehicle’, ‘ vehicles’, ‘driver’ 0.0045
L12.u7344 132 ‘ commemor’, ‘ streets’, ‘ celebrations’, ‘ Streets’, ‘ highways’ 0.0044

L12.u9058 174 ‘ swimming’, ‘ Swim’, ‘ swim’, ‘ fishes’, ‘ water’ 0.0062
L17.u10507 174 ‘ rivers’, ‘ river’, ‘ lake’, ‘ lakes’, ‘ River’ 0.0049
L7.u3138 174 ‘ basin’, ‘ ocean’, ‘ islands’, ‘ valleys’, ‘ mountains’ 0.0046
L5.u6930 149 ‘ rivers’, ‘ river’, ‘ River’, ‘ waters’, ‘ waterways’ 0.0042
L7.u14218 174 ‘ docks’, ‘ Coast’, ‘ swimming’, ‘ swim’, ‘melon’ 0.0040
L9.u4379 149 ‘ river’, ‘ stream’, ‘ River’, ‘ Valley’, ‘ flow’ 0.0038
L6.u5868 149 ‘water’, ‘ water’, ‘ waters’, ‘ river’, ‘ River’ 0.0036
L9.u4379 174 ‘ river’, ‘ stream’, ‘ River’, ‘ Valley’, ‘ flow’ 0.0036
L5.u6930 174 ‘ rivers’, ‘ river’, ‘ River’, ‘ waters’, ‘ waterways’ 0.0032
L7.u3138 149 ‘ basin’, ‘ ocean’, ‘ islands’, ‘ valleys’, ‘ mountains’ 0.0029
L6.u5868 174 ‘water’, ‘ water’, ‘ waters’, ‘ river’, ‘ River’ 0.0028
L7.u416 136 ‘ praise’, ‘ glimpse’, ‘ glimps’, ‘ palate’, ‘ flavours’ 0.0027
L10.u15235 149 ‘ water’, ‘ waters’, ‘water’, ‘ lake’, ‘ lakes’ 0.0026
L4.u2665 136 ‘ levels’, ‘ absorbed’, ‘ density’, ‘ absorption’, ‘ equilibrium’ 0.0026
L10.u14355 149 ‘ roads’, ‘ paths’, ‘ flows’, ‘ routes’, ‘ streams’ 0.0026
L17.u10507 149 ‘ rivers’, ‘ river’, ‘ lake’, ‘ lakes’, ‘ River’ 0.0024
L7.u7669 174 ‘ weather’, ‘ season’, ‘ forecast’, ‘ rains’, ‘ winters’ 0.0024
L8.u9322 136 ‘ combustion’, ‘ turbulence’, ‘ recoil’, ‘ vibration’, ‘ hydrogen’ 0.0024
L9.u15864 182 ‘lihood’, ‘/**’, ‘Advertisements’, ‘.”.’, ‘”””’ 0.0022
L7.u3138 78 ‘ basin’, ‘ ocean’, ‘ islands’, ‘ valleys’, ‘ mountains’ 0.0021

Table S.1. Results of attribution analysis for randomly sampled images from the COCO validation set. Includes decodings of the top 20
units by attribution score. The first column shows the COCO image followed by superimposed heatmaps of the mean activations from the
top 20 units and the top interpretable units (shown in bold). Units can repeat if they attain a high attribution score on multiple patches.



Image COCO Human Captions GPT Caption

A man riding a snowboard down the side of a snow covered slope. A person jumping on the ice.
A man snowboarding down the side of a snowy mountain.
Person snowboarding down a steep snow covered slope.
A person snowboards on top of a snowy path.
The person holds both hands in the air while snowboarding.

Patch Image soft prompt (nearest neighbor tokens) BSc. Random soft prompt (nearest neighbor tokens) BSc.

144 [’nav’, ’GY’, ’+++’, ’done’, ’Sets’] .29 [’Movement’, ’Ord’, ’CLUD’, ’levy’, ’LI’] .31
80 [’heels’, ’merits’, ’flames’, ’platform’, ’fledged’] .36 [’adic’, ’Stub’, ’imb’, ’VER’, ’stroke’] .34
169 [’ear’, ’Nelson’, ’Garden’, ’Phill’, ’Gun’] .32 [’Thank’, ’zilla’, ’Develop’, ’Invest’, ’Fair’] .31
81 [’vanilla’, ’Poc’, ’Heritage’, ’Tarant’, ’bridge’] .33 [’Greek’, ’eph’, ’jobs’, ’phylogen’, ’TM’] .30
89 [’oily’, ’stant’, ’cement’, ’Caribbean’, ’Nad’] .37 [’Forestry’, ’Mage’, ’Hatch’, ’Buddh’, ’Beaut’] .34
124 [’ension’, ’ideas’, ’GY’, ’uler’, ’Nelson’] .32 [’itone’, ’gest’, ’Af’, ’iple’, ’Dial’] .30
5 [’proves’, ’Feed’, ’meaning’, ’zzle’, ’stripe’] .31 [’multitude’, ’psychologically’, ’Taliban’, ’Elf’, ’Pakistan’] .36
175 [’util’, ’elson’, ’asser’, ’seek’, ’////////////////////’] .26 [’ags’, ’Git’, ’mm’, ’Morning’, ’Cit’] .33
55 [’Judicial’, ’wasting’, ’oen’, ’oplan’, ’trade’] .34 [’odd’, ’alo’, ’rophic’, ’perv’, ’pei’] .34
61 [’+++’, ’DEP’, ’enum’, ’vernight’, ’posted’] .33 [’Newspaper’, ’iii’, ’INK’, ’Graph’, ’UT’] .35
103 [’Doc’, ’Barth’, ’details’, ’DEF’, ’buckets’] .34 [’pleas’, ’Eclipse’, ’plots’, ’cb’, ’Menu’] .36
99 [’+++’, ’Condition’, ’Daytona’, ’oir’, ’research’] .35 [’Salary’, ’card’, ’mobile’, ’Cour’, ’Hawth’] .35
155 [’Named’, ’910’, ’collar’, ’Lars’, ’Cats’] .33 [’Champ’, ’falsely’, ’atism’, ’styles’, ’Champ’] .30
145 [’cer’, ’args’, ’olis’, ’te’, ’atin’] .30 [’Chuck’, ’goose’, ’anthem’, ’wise’, ’fare’] .33
189 [’MOD’, ’Pres’, ’News’, ’Early’, ’Herz’] .33 [’Organ’, ’CES’, ’POL’, ’201’, ’Stan’] .31
49 [’Pir’, ’Pir’, ’uum’, ’akable’, ’Prairie’] .30 [’flame’, ’roc’, ’module’, ’swaps’, ’Faction’] .33
20 [’ear’, ’feed’, ’attire’, ’demise’, ’peg’] .33 [’Chart’, ’iw’, ’Kirst’, ’PATH’, ’rhy’] .36
110 [’+++’, ’Bee’, ’limits’, ’Fore’, ’seeking’] .31 [’imped’, ’iola’, ’Prince’, ’inel’, ’law’] .33
6 [’SIGN’, ’Kob’, ’Ship’, ’Near’, ’buzz’] .36 [’Tower’, ’767’, ’Kok’, ’Tele’, ’Arbit’] .33
46 [’childhood’, ’death’, ’ma’, ’vision’, ’Dire’] .36 [’Fram’, ’exper’, ’Pain’, ’ader’, ’unprotected’] .33
113 [’Decl’, ’Hide’, ’Global’, ’orig’, ’meas’] .32 [’usercontent’, ’OTUS’, ’Georgia’, ’ech’, ’GRE’] .32
32 [’ideas’, ’GY’, ’+++’, ’Bake’, ’Seed’] .32 [’GGGGGGGG’, ’dictators’, ’david’, ’ugh’, ’BY’] .31
98 [’Near’, ’Near’, ’LIN’, ’Bee’, ’threat’] .30 [’Lavrov’, ’Debor’, ’Hegel’, ’Advertisement’, ’iak’] .34
185 [’ceans’, ’Stage’, ’Dot’, ’Price’, ’Grid’] .33 [’wholesale’, ’Cellular’, ’Magn’, ’Ingredients’, ’Magn’] .32
166 [’bys’, ’767’, ’+++’, ’bottles’, ’gif’] .32 [’Bras’, ’discipl’, ’gp’, ’AR’, ’Toys’] .33
52 [’Kob’, ’Site’, ’reed’, ’Wiley’, ’âĻ’] .29 [’THER’, ’FAQ’, ’ibility’, ’ilities’, ’twitter’] .34
90 [’cytok’, ’attack’, ’Plug’, ’strategies’, ’uddle’] .32 [’Boots’, ’Truman’, ’CFR’, ’ãĤ£’, ’Shin’] .33
13 [’nard’, ’Planetary’, ’lawful’, ’Court’, ’eman’] .33 [’Nebraska’, ’tails’, ’ÅŁ’, ’DEC’, ’Despair’] .33
47 [’pport’, ’overnight’, ’Doc’, ’ierra’, ’Unknown’] .34 [’boiling’, ’A’, ’Ada’, ’itude’, ’flawed’] .31
19 [’mocking’, ’chicks’, ’GY’, ’ear’, ’done’] .35 [’illet’, ’severely’, ’nton’, ’arrest’, ’Volunteers’] .33
112 [’avenue’, ’gio’, ’Parking’, ’riages’, ’Herald’] .35 [’griev’, ’Swanson’, ’Guilty’, ’Sent’, ’Pac’] .32
133 [’ãĤĬ’, ’itto’, ’iation’, ’asley’, ’Included’] .32 [’Purs’, ’reproductive’, ’sniper’, ’instruct’, ’Population’] .33
102 [’drawn’, ’Super’, ’gency’, ’Type’, ’blames’] .33 [’metric’, ’Young’, ’princip’, ’scal’, ’Young’] .31
79 [’Vand’, ’inement’, ’straw’, ’ridiculous’, ’Chick’] .34 [’Rez’, ’song’, ’LEGO’, ’Login’, ’pot’] .37
105 [’link’, ’ede’, ’Dunk’, ’Pegasus’, ’Mao’] .32 [’visas’, ’Mental’, ’verbal’, ’WOM’, ’nda’] .30

Average .33 .33

Table S.2. Image soft prompts are indistinguishable from random soft prompts via BERTScore. Each image is encoded as a sequence of
196 soft prompts, corresponding to image patches, that serve as input to GPT-J. Here we randomly sample 35 patches for a single COCO
image and map them onto nearest-neighbor tokens in transformer embedding space. BERTScore is measured relative to COCO human
captions of the same image (we report the mean score over the 5 human captions). For comparison we sample random vectors in the
transformer embedding space and compute BERTScores using the same procedure.



Original Image Average Mask Top Individual Multimodal Neurons 

COCO ID = 507042 IoU=.17 L5.u4923 IoU=.11 L8.u2210 IoU = .10 L4.u2858 IoU = .15 L5.u450             IoU=.18 L7.u5875           IoU=.13 L8.u2012 IoU=.16

COCO ID = 438269 IoU=.26 L7.u12134 IoU=.26 L8.u11473 IoU = .19 L7.u5875 IoU = .24 L5.u4923           IoU=.23 L10.u6432         IoU=.10 L10.u6015 IoU=.16

COCO ID = 181859 IoU=.64 L12.u12884 IoU=.60 L8.u2790 IoU = .61 L7.u16297 IoU = .53 L7.u15772         IoU=.68 L7.u16297         IoU=.53 L5.u12136 IoU=.50

COCO ID = 520910 IoU=.16 L8.u16024 IoU=.15 L5.u10004 IoU = .09 L5.u12040 IoU = .07 L7.u8417           IoU=.15 L7.u9458           IoU=.06 L7.u6918 IoU=.14

COCO ID = 353518 IoU=.13 L9.u6991 IoU=.18 L7.u14218 IoU = .09 L5.u15561 IoU = .18 L7.u14218         IoU=.09 L7.u3030           IoU=.11 L7.u14008 IoU=.09

COCO ID = 108864 IoU=.68 L7.u3273 IoU=.53 L8.u6593 IoU = .49 L12.u12884 IoU = .41 L14.u2019         IoU=.36 L6.u11916         IoU=.52 L9.u5970 IoU=.32

COCO ID = 430973 IoU=.51 L8.u13681 IoU=.45 L6.u3132 IoU = .56 L1.u6130 IoU = .08 L6.u3132          IoU=.56 L11.u14710       IoU=.41 L9.u6991 IoU=.14

COCO ID = 486479 IoU=.40 L12.u12884 IoU=.39 L10.u14325 IoU = .19 L10.u11572 IoU = .16 L8.u4372           IoU=.13 L5.u4530           IoU=.34 L7.u16297 IoU=.39

Figure S.1. Multimodal neurons are selective for objects in images. For 8 example images sampled from the COCO categories described
in Section 3.2 of the main paper, we show activation masks of individual multimodal neurons over the image, as well as mean activation
masks over all top multimodal neurons. We use IoU to compare these activation masks to COCO object annotations. IoU is calculated by
upsampling each activation mask to the size of the original image (224) using bilinear interpolation, and thresholding activations in the
95th percentile to produce a binary segmentation mask.



Figure S.2. Multimodal neurons are selective for image categories. (a) For 10 ImageNet classes we construct the set of interpretable
multimodal neurons with the highest attribution scores on training images in that class, and calculate their activations on validation images.
For each class, we report the average activation value of top-scoring multimodal units relative to the maximum value of their average
activations on any class. Multimodal neurons are maximally active on classes where their attribution scores are highest. (b) Sample images
and top-scoring units from two classes.



S.5. Ablating Multimodal Neurons
In Section 3.3 of the main paper, we show that ablating
multimodal neurons causally effects the probability of out-
putting the original token. To investigate the effect of ab-
lating multimodal neurons on the model captioning output,
we ablate the top k units by attribution score for an image,
where k ∈ {0, 50, 100, 200, 400, 800, 1600, 3200, 6400},
and compute the BERTScore between the model’s original
caption and the newly-generated zero-temperature caption.
Whether we remove the top k units by attribution score,
or only those that are interpretable, we observe a strong
decrease in caption similarity. Table S.3 shows examples
of the effect of ablating top neurons on randomly sampled
COCO validation images, compared to the effect of ablating
random neurons. Figure S.4 shows the average BERTScore
after ablating k units across all COCO validation images.

Figure S.3. BERTScores of generated captions decrease when
multimodal neurons are ablated compared to the ablation of ran-
dom neurons from the same layers.

S.6. Distribution of Multimodal Neurons
We perform a simple analysis of the distribution of multi-
modal neurons by layer. Specifically, we extract the top 100
scoring neurons for all COCO validation images. Most of
these neurons are found between layers 5 and 10 of GPT-
J (L = 28; see Figure S.4), consistent with the finding
from [26] that MLP knowledge contributions occur in ear-
lier layers.

Figure S.4. Unique multimodal neurons per layer chosen using the
top 100 attribution scores for each COCO validation image. Inter-
pretable units are those for which at least 7 of the top 10 logits are
words in the English dictionary containing ≥ 3 letters.



Captions after ablation
Img. ID # Abl. All multimodal BSc. Interpretable multimodal BSc. Random neurons BSc.

219578 0 a dog with a cat 1.0 a dog with a cat 1.0 a dog with a cat 1.0
50 a dog and a cat .83 a dog and a cat .83 a dog with a cat 1.0
100 a lion and a zebra .71 a dog and cat .80 a dog with a cat 1.0
200 a dog and a cat .83 a dog and a cat .83 a dog with a cat 1.0
400 a lion and a lioness .64 a dog and a cat .83 a dog with a cat 1.0
800 a tiger and a tiger .63 a lion and a zebra .71 a dog with a cat 1.0
1600 a tiger and a tiger .63 a lion and a zebra .71 a dog with a cat 1.0
3200 a tiger .67 a tiger and a tiger .63 a dog with a cat 1.0
6400 a tiger .67 a tiger in the jungle .60 a dog with a cat 1.0

131431 0 the facade of the cathedral 1.0 the facade of the cathedral 1.0 the facade of the cathedral 1.0
50 the facade of the church .93 the facade of the cathedral 1.0 the facade of the cathedral 1.0
100 the facade of the church .93 the facade of the cathedral 1.0 the facade of the cathedral 1.0
200 the facade .75 the facade .75 the facade of the cathedral 1.0
400 the exterior of the church .80 the facade .75 the facade of the cathedral 1.0
800 the exterior of the church .80 the dome .65 the facade of the cathedral 1.0
1600 the dome .65 the dome .65 the facade of the cathedral 1.0
3200 the dome .65 the dome .65 the facade of the cathedral 1.0
6400 the exterior .61 the dome .65 the facade .75

180878 0 a cake with a message a cake with a message a cake with a message
written on it. 1.0 written on it. 1.0 written on it. 1.0

50 a cake with a message a cake with a message a cake with a message
written on it. 1.0 written on it. 1.0 written on it. 1.0

100 a cake with a message a cake for a friend’s birthday. .59 a cake with a message
written on it. 1.0 written on it. 1.0

200 a cake with a message a cake for a friend’s birthday. .59 a cake with a message
written on it. 1.0 written on it. 1.0

400 a cake with a message a cake for a friend’s birthday. .59 a cake with a message
written on it. 1.0 written on it. 1.0

800 a cake .59 a cake for a birthday party .56 a cake with a message
written on it. 1.0

1600 a cake .59 a poster for the film. .49 a cake with a message
written on it. 1.0

3200 a man who is a fan of a typewriter .44 a cake with a message
football .42 written on it. 1.0

6400 the day .34 a typewriter .44 a cake with a message
written on it. 1.0

128675 0 a man surfing on a wave 1.0 a man surfing on a wave 1.0 a man surfing on a wave 1.0
50 a man in a kayak on a lake .74 a man surfing on a wave 1.0 a man surfing on a wave 1.0
100 a man in a kayak on a lake .74 a man surfing on a wave 1.0 a man surfing on a wave 1.0
200 a man in a kayak on a lake .74 a man surfing a wave .94 a man surfing on a wave 1.0
400 a man in a kayak on a lake .74 a man surfing a wave .94 a man surfing on a wave 1.0
800 a man in a kayak .64 a surfer riding a wave .84 a man surfing on a wave 1.0
1600 a girl in a red dress a surfer riding a wave .84 a man surfing on a wave 1.0

walking on the beach .66
3200 a girl in a red dress .53 a girl in a red dress .53 a man surfing on a wave 1.0
6400 a girl in the water .62 a girl in a dress .59 a man surfing on a wave 1.0



Img. ID # Abl. All multimodal BSc. Interpretable multimodal BSc. Random neurons BSc.

289960 0 a man standing on a rock a man standing on a rock a man standing on a rock
in the sea 1.0 in the sea 1.0 in the sea 1.0

50 a man standing on a rock a man standing on a rock a man standing on a rock
in the sea 1.0 in the sea 1.0 in the sea 1.0

100 a man standing on a rock a man standing on a rock a man standing on a rock
in the sea 1.0 in the sea. .94 in the sea 1.0

200 a kite soaring above the waves .62 a man standing on a rock a man standing on a rock
in the sea 1.0 in the sea 1.0

400 a kite soaring above the waves .62 a kite surfer on the beach. .62 a man standing on a rock
in the sea 1.0

800 a kite soaring above the waves .62 a bird on a wire .63 a man standing on a rock
in the sea 1.0

1600 a kite soaring above the clouds .65 a kite surfer on the beach .63 a man standing on a rock
in the sea 1.0

3200 a kite soaring above the sea .69 a bird on a wire .63 a man standing on a rock
in the sea 1.0

6400 a helicopter flying over the sea .69 a bird on a wire .63 a man standing on a rock
in the sea 1.0

131431 0 the bridge at night 1.0 the bridge at night 1.0 the bridge at night 1.0
50 the bridge .70 the street at night .82 the bridge at night 1.0
100 the bridge .70 the street at night .82 the bridge at night 1.0
200 the bridge .70 the street at night .82 the bridge at night 1.0
400 the bridge .70 the street .55 the bridge at night 1.0
800 the bridge .70 the street .55 the bridge at night 1.0
1600 the bridge .70 the street .55 the bridge at night 1.0
3200 the night .61 the street .55 the bridge at night 1.0
6400 the night .61 the street .55 the bridge at night 1.0

559842 0 the team during the match. 1.0 the team during the match. 1.0 the team during the match. 1.0
50 the team. .70 the team. .70 the team during the match. 1.0
100 the team. .70 the team. .70 the team during the match. 1.0
200 the team. .70 the team. .70 the team during the match. 1.0
400 the group of people .52 the team. .70 the team during the match. 1.0
800 the group .54 the team. .70 the team during the match. 1.0
1600 the group .54 the team. .70 the team during the match. 1.0
3200 the group .54 the team. .70 the team during the match 1.0
6400 the kids .46 the team. .70 the team during the match. 1.0

47819 0 a man and his horse. 1.0 a man and his horse. 1.0 a man and his horse. 1.0
50 a man and his horse. 1.0 a man and his horse. 1.0 a man and his horse. 1.0
100 the soldiers on the road .47 a man and his horse. 1.0 a man and his horse. 1.0
200 the soldiers on the road .47 the soldiers on the road .47 a man and his horse. 1.0
400 the soldiers .46 the soldiers .46 a man and his horse. 1.0
800 the soldiers .46 the soldiers .46 a man and his horse. 1.0
1600 the soldiers .46 the soldiers .46 a man and his horse. 1.0
3200 the soldiers .46 the soldiers .46 a man and his horse. 1.0
6400 the soldiers .46 the soldiers .46 a man and his horse. 1.0

Table S.3. Captions and BERTScores (relative to original GPT caption) after incremental ablation of multimodal MLP neurons. All multi-
modal neurons are detected, decoded, and filtered to produce a list of “interpretable” multimodal neurons using the procedure described in
Section S.2. Random neurons are sampled from the same layers as multimodal neurons for ablation. Images are randomly sampled from
the COCO validation set. Captions are generated with temperature = 0.


