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A central puzzle in vision science is how perceptions that are routinely at odds with
physical measurements of real world properties can arise from neural responses that
nonetheless lead to effective behaviors. Here we argue that the solution depends on:
(1) rejecting the assumption that the goal of vision is to recover, however imperfectly,
properties of the world; and (2) replacing it with a paradigm in which perceptions
reflect biological utility based on past experience rather than objective features of the
environment. Present evidence is consistent with the conclusion that conceiving vision
in wholly empirical terms provides a plausible way to understand what we see and why.
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INTRODUCTION

A widely accepted concept of vision in recent decades stems from studies carried out by Stephen
Kuffler, David Hubel and Torsten Wiesel beginning in the 1950s (Kuffler, 1953; Hubel and Wiesel,
2005). This seminal work showed that neurons in the primary visual pathway of cats and monkeys
respond to light stimuli in specific ways, implying that the detection of retinal image features
plays a central role in visual perception. Based on the properties of simpler input-level cells, Hubel
and Wiesel discovered that neurons in V1 respond selectively to retinal activation elicited by
oriented bars of light, bars of a certain length, bars moving in different directions, and stimuli
with different spectral properties. These and other findings earned Hubel and Wiesel a Nobel
Prize in 1981 (Kuffler had died in 1980), and inspired a generation of scientists to pursue similar
electrophysiological and neuroanatomical research in a variety of species in the ongoing effort to
reveal how vision works.

A seemingly straightforward interpretation of these observations is that the visual system
operates analytically, extracting features from retinal images, efficiently filtering and processing
image features in a series of computational steps, and ultimately combining them to provide
a close approximation of physical reality that is then used to guide behavior. This concept of
visual perception is logical, accords with electrophysiological and anatomical evidence, and has
the further merit of being similar to the operation of computers, providing an analogy that
connects biological vision with machine vision and artificial intelligence (Marr, 1982). Finally, this
interpretation concurs with the impression that we see the world more or less as it really is and
behave accordingly. Indeed, to do otherwise would seem to defy common sense and insure failure.

Attractive though it is, this interpretation fails to consider an axiomatic fact about biological
vision: retinal images conflate the physical properties of objects, and therefore cannot be used to
recover the objective properties of the world (Figure 1). Consequently, the basic visual qualities
we perceive—e.g., lightness, color, form, distance, depth and motion—cannot specify reality.
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FIGURE 1 | The major obstacle to the concept of vision as feature
representation. (A) Luminance values in retinal stimuli are determined by
illumination and reflectance, as well as a host of other factors (e.g.,
atmospheric transmittance, spectral content, and many more). These physical
parameters are conflated in light stimuli, however, precluding biological
measurements of the objective world in which perceptions and behaviors
must play out. (B) The analogous conflation of geometrical information in
retinal stimuli.

A further fact that adds to the challenge of understanding
how vision works is the discrepancy between these perceived
qualities and the physical parameters of objects and conditions
in the world (Figure 2). As numerous psychophysical studies
have shown, lightness and darkness percepts are at odds with
luminance, color is at odds with distributions of spectral
power, size, distance and depth are at odds with geometrical
measurements, and speeds and directions of motion are at odds
with measured vectors (Gelb, 1929; Stevens, 1975; Rock, 1984;
Robinson, 1998; Purves and Lotto, 2003; Wojtach et al., 2008,
2009; Sung et al., 2009; Purves et al., 2014). These differences
between perception and reality cannot be dismissed as minor
errors or approximations that are ‘‘close enough’’ to succeed,
since the discrepancies are ubiquitous and often profound (see
Figure 2A, for example).

The result has been diminished confidence in concepts of
vision based on retinal feature detection, opening the door to
other ways of understanding visual perception, the purposes of

visual circuitry, and the genesis of visually guided behavior. A
common denominator of these alternative views is the use of past
experience—i.e., empirical evidence—to explain vision.

EARLY IDEAS ABOUT VISION ON AN
EMPIRICAL BASIS

The loss of information due to the transformation of three-
dimensional (3-D) Euclidean space into two-dimensional
(2-D) images and the introduction of noise inherent in
biological processes led some early schools of psychology to
advocate theories of vision that included the influence of
lifetime experience. This line of thinking began in the mid-
19th century when Hermann von Helmholtz proposed that
perceptions arising from impoverished images are supplemented
by ‘‘unconscious inferences’’ about reality made on the basis
of individual experience (Helmholtz, 1866/1924). He added the
qualifier ‘‘unconscious’’ because observers are rarely aware of
how their past experience could affect perception.

For much of the first half of the 20th century the role of
empirical information in determining perception was conceived
in terms of gestalt laws or other heuristics. The gestalt school
was founded shortly after the turn of the century by Max
Wertheimer (1912/1950), and advanced under the aegis of his
students Kurt Koffka (1935) andWolfgang Köhler (1947). At the
core of gestalt theory is the idea that the ‘‘units of experience
go with the functional units in the underlying physiological
processes’’ (Wolfgang Köhler, 1947, p. 63). In gestalt terms, this
influence was codified as the ‘‘the law of präganz’’ (meaning
‘‘conciseness’’), expressing the idea that, based on experience,
any perception would be determined by the simplest possible
source of the image in question. Building on some of these
ideas Egon Brünswik argued further that, in order to fully
understand perception, the connection between the organism
and the environment must be clarified. Given that information
acquired by sense organs is uncertain, he supposed that visual
animals must rely on the statistical nature of environments to
achieve their goals. As described in his theory of ‘‘probabilistic
functionalism’’ (Brünswik, 1956/1997), Brünswik anticipated
some current empirical approaches to vision based on probable
world states (see Vision as Bayesian Inference).

Brünswik’s emphasis on the environment influenced the
subsequent work of James Gibson (1966, 1979), who carried
empirical thinking in yet another direction by arguing that
perception is determined by the objects and circumstances
observers are exposed to when moving though the world.
Gibson proposed that observers could directly perceive their
environment by relying on ‘‘invariances’’ in the structure of
retinal images, a position similar to the statistical regularity
of objects and conditions (e.g., commonly encountered
ratios, proportions, and the like) identified by Brünswik.
The invariances used by agents exploring the world led Gibson
to posit vision as a ‘‘perceptual system’’ that included both the
body and its environment—a position fundamentally different
from Helmholtz’s idea of empirically modifying retinal image
information acquired by a ‘‘sensing system’’. In the case of size
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FIGURE 2 | The perception of basic visual qualities is at odds with the world assessed by physical instruments. (A) One of many examples generated
over the last century or more illustrating the discrepancy between luminance and lightness. Although each of the patches indicated in the inset returns the same
amount of light to the eye (i.e., they have the same luminance), their apparent lightness values in the scene are very different. (B) An example of the discrepancy
between perceived and measured geometry that has again been repeatedly documented since the mid-19th century. The lines on the left are all of equal length, but,
as shown on the right, are perceived differently depending on their orientation (apparent length is expressed in relation to the horizontal line, which is seen as shortest
in psychophysical testing).

and distance, for example, Gibson maintained that the ratio of
object projections to background textures provided the kind of
invariant information that would allow an observer to directly
apprehend otherwise ambiguous size-distance relationships.
He took the mechanism to be one of ‘‘resonance’’ between
the activity of a perceptual system and the properties of the
environment that gave rise to light stimuli.

Although these early empirical strategies were imaginative
and in some ways prescient, they suffered from an absence of
ties to the structure and function of animal visual systems. Thus
Helmholtz, Wertheimer, Koffka, Köhler, Brünswik, and Gibson
were necessarily vague, speculative or simply mute about how
empirical information might be usefully implemented in visual
system physiology and anatomy. In consequence, empirical

approaches to vision began to languish at mid-century, while
visual neurobiology with its increasingly concrete evidence about
how visual systems operate at the neuronal level came to
dominate vision science in the 1960s and for the next several
decades (Hubel and Wiesel, 2005).

By the 1990s, however, it was becoming increasingly
apparent that, despite key insights into the feature-selective
properties of visual neurons, neurophysiological and
neuroanatomical approaches to perception were unable to
explain how processing retinal image features could, in
principle, contend with the inability of visual stimuli to
convey information about the objective properties of the
world (see Figure 1). At the same time, advances in computer
hardware and software were rapidly making the evaluation
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of large datasets relatively easy. Accordingly, investigators
began to re-examine the merits of vision determined by past
experience. The basis of much of this thinking has been
that visual perception could be understood as probabilistic
inferences about the most likely physical states of the
world.

VISION AS BAYESIAN INFERENCE

The most popular approach to vision as statistical inference is
based on Bayesian decision theory (Knill and Richards, 1996;
Mamassian et al., 2002; Kersten and Yuille, 2003; Lee and
Mumford, 2003; Kersten et al., 2004; Knill and Pouget, 2004;
Körding, 2014). In effect, investigators built on Helmholtz’s
idea of unconscious inference, formally recasting it in terms
of Bayes’ theorem (Bayes, 1763), a widely used procedure for
assessing the probability of an inference being correct given
a set of inconclusive evidence. The theorem states that the
probability of inference A being true given evidence B (the
posterior probability) depends on the probability of obtaining B
given inference A (the likelihood), multiplied by the probability
of inference A being true (the prior), these factors typically being
normalized by dividing by the probability of evidence B. Thus the
theorem can be written as:

p(A|B) =
p(B|A)p(A)

p(B)
(1)

To illustrate a Bayesian approach to vision, consider a simple
example in which an image is generated by a single light source
and a given surface reflectance (e.g., Brainard, 2009; see also
Allred and Brainard, 2013). Although many physical factors
are involved in generating natural images (see Figure 1A), the
luminance values (L) in an image are primarily the product of
the intensity of illumination (I) and reflectance properties of
surfaces (R). Thus the first step in validating the idea that vision
follows Bayes’ theorem would be to determine the probability
distributions of surface reflectance and illumination values—the
priors p(R) and p(I), respectively—which can be approximated
by measurements in the environment. The next step would be to
derive the likelihood function p(L|R, I), i.e., the probability of a
specific luminance being generated by various surface reflectance
and illumination intensities. The posterior distribution, p(R, I|L),
is then obtained by multiplying the prior distribution by the
likelihood function:

p(R, I|L) =
p(L|R, I)p(R)p(I)

p(L)
(2)

Because the posterior distribution indicates only the relative
probabilities of a set of possible sources, a final step is to
select particular reflectance and illumination values from the
set according to an assumed gain-loss function. The perceptual
outcome—the lightness seen—would presumably accord with
the surface reflectance at the most likely combination of surface
reflectance and illuminant intensity values. Thus, perceived
lightness is taken to be an estimate of surface reflectance.

Experimental assessments of the responses to visual stimuli
are made in terms of a Bayesian ‘‘ideal observer’’, defined

as an observer who always responds to the most probable
state of the world (Geisler, 2011)—e.g., the most probable
surface reflectance value that could have given rise to a
retinal luminance value. As indicated in equation (2), an
experimenter can validate how well humans approach this ideal
by measuring perceptual estimates—in this case, by gauging
perceived lightness, which is assumed to be an estimate of
surface reflectance—and comparing these to predictions that
combine stimulus information in a statistically optical fashion
(e.g., Ernst and Banks, 2002; Weiss et al., 2002). Studies of this
sort have supported the conclusion that vision can indeed be
modeled as a system based on Bayesian inferences. Whether
estimating surface slant (Knill and Saunders, 2003), responding
to apparent motion stimuli (Weiss et al., 2002; Stocker and
Simoncelli, 2006), planning movements (Körding and Wolpert,
2004; Tassinari et al., 2006), integrating somatosensory haptics
and visual cues (Ernst and Banks, 2002), combining prior
real world assumptions with those in the scene at hand
(Morgenstern et al., 2011), or reporting lightness (Allred
and Brainard, 2013), subjects perform at close to Bayesian
optimality.

The compelling logic of Bayesian decision theory and
its useful formalization of Helmholtz’s concept of empirical
inference notwithstanding, Bayesian approaches that rely on
estimating properties of the world are at a loss when seeking to
understand visual neurobiology and/or the neural mechanisms
underlying psychophysical functions. The reason is simply that
biological visual systems cannot acquire the information that
Bayesian decision theory demands: when a Bayesian ideal
observer predicts perception, it is because the perceived quality
is assumed to estimate the actual properties and conditions
in the world. Given the inherent ambiguity of retinal images
(see Figure 1), however, Bayesian priors and likelihoods of
reflectance, illumination or other physical variables are not
available to biological visual systems.

Although it is possible to model how neural activity in
different sensory systems could be combined using Bayesian
decision theory (Fetsch et al., 2013), such models cannot indicate
how information about the physical world could be obtained in a
way that avoids the quandary illustrated in Figure 1. Indeed, any
model based on recovering or estimating real-world parameters,
statistically or otherwise, will fail as a canonical explanation of
visual perception (see also Jones and Love, 2011; Bowers and
Davis, 2012). Biological vision must therefore depend on some
other strategy that does not require accessing the real-world
parameters of image sources.

INFORMATION THEORETIC APPROACHES

A different empirical approach to vision is based on information
theory. Within a few years of Claude Shannon’s idea of using
Boolean algebra to design switching circuits that could make
messages transmitted over noisy communication channels more
efficient (Shannon, 1948; Shannon and Weaver, 1949), this
framework was applied to vision (Attneave, 1954; Barlow,
1961). The premise of these studies was that the properties
of visual and other sensory systems would encode, transmit,
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and decode the empirical characteristics of naturally occurring
stimuli with maximum efficiency. Subsequent approaches in
these terms have variously interpreted vision to operate on the
basis of predictive coding (Srinivasan et al., 1982; Rao and
Ballard, 1999; Hosoya et al., 2005); coding that de-correlates
the information of noisy inputs (Barlow, 1961; Laughlin, 1981);
a filtering scheme for ensuring sparse coding (Olshausen and
Field, 1996); and/or greater efficiency achieved by divisive
normalization (Schwartz and Simoncelli, 2001; Carandini and
Heeger, 2012).

The overarching theme of this approach is that optimizing
information transfer by minimizing the metabolic and other
costs of wiring, action potential generation and synaptic
transfer—while at the same time maximizing the entropy of
neural communication—could rationalize the characteristics of
receptive fields in visual animals (Graham and Field, 2007). As
it has turned out, the idea that some features of visual systems
arise from efficiently encoding the statistical structure of natural
environments is consistent with a number of computational
(Srinivasan et al., 1982; Atick and Redlich, 1993; Olshausen and
Field, 1996; Bell and Sejnowski, 1997; van Hateren and van der
Schaaf, 1998; Brady and Field, 2000; Schwartz and Simoncelli,
2001; Simoncelli and Olshausen, 2001) and physiological studies
(Dan et al., 1996; Baddeley et al., 1997; Vinje and Gallant,
2000).

Although the success of models based on information
theory leaves no doubt about the advantages of efficient visual
processing, the models do not explain how the inevitable
conflation of information in images is dealt with by the visual
system (see earlier and Figure 1), or why perceived visual
qualities do not correspond with measured physical parameters
in the visual environment (see Figure 2). Nor do they indicate
how biological visual systems successfully guide behavior.

While these deficiencies do not diminish the importance
of efficient neural processing conceived in terms of Shannon
entropy, efficiency is not directly germane to perception and
behavior, just as efficiency in telecommunication is not germane
to the content of the messages that are transmitted. Generating
perceptions that succeed in a world whose physical parameters
cannot be recovered is a different goal, in much the same
way that the functional aim of any organ system differs from
the concurrent need to achieve its purposes as efficiently as
possible.

A WHOLLY EMPIRICAL APPROACH

The aim of the visual system in these approaches is assumed to
be the recovery of real world properties, however imperfectly,
from information in retinal stimuli. A different supposition
is that since retinal images cannot specify the measurable
properties of objects (see Figure 1), achieving this goal is
impossible. It follows that visual perceptions must therefore
arise from a strategy that does not rely on real world
properties as such. In a wholly empirical conception of
vision, the perceptual values we experience are determined
by ordering visual qualities according to the frequency
of occurrence of image patterns and how this impacts

survival (Purves and Lotto, 2003, 2011; Purves et al., 2011,
2014).

In general terms, understanding this strategy is
straightforward. Imagine a population of primitive organisms
whose behavior is dictated by rudimentary collections of
photoreceptors and associated neural connections. As stipulated
by neo-Darwinian theory, the organization of both the receptors
and their connections in the population is subject to small
random variations in structure and function that are acted on by
natural selection. Based on interactions with the environment,
variations of pre-neural and neural configurations that promote
survival tend to be passed down to future generations. As a result,
the ranks of visual qualities an agent perceives over some evolved
range (darkest-lightest, largest-smallest, fastest-slowest, etc.)
reflect biological utility rather than the physically measureable
properties of objects and conditions in the world. In short, the
role of perceptual states is not to reveal the physical world,
but to promote useful behaviors. In this scheme, the world is
simply the arena in which the utility of perceptions and other
behavioral responses pertinent to survival and reproduction
is tested, with feedback from the environment acting as the
driving force that gradually instantiates the needed circuitry
(Figure 3).

In implementing this strategy, however, vision cannot rely
on entire images, as efficient coding theory has long recognized
(see Information Theoretic Approaches). The reason is that the
extraordinary detail in most retinal images will rarely, if ever,
activate the full array of photoreceptors in exactly the same way
again. Processes like evolution and lifetime learning, however,
depend on repeated trial and error. Thus rather than relying
on images per se, biological vision is better served by relying
on the recurring scale-invariant patterns within images to rank
perceptual qualities (scale invariance refers to a relationship
that does not change when variables such as length and width
are multiplied by a common factor). In this way the biological
feedback loop diagrammed in Figure 3 can progressively
organize both ordinal (e.g., lighter-darker, larger-smaller) and
non-ordinal (e.g., color, direction) visual qualities over useful
ranges according to the relative frequency of pattern occurrences
and feedback from behavior. This concept is consistent with
classical physiological studies demonstrating the transformation
of images by the evolved receptive fields of early level visual
neurons (Hubel, 1988; Hubel and Wiesel, 2005), with the goal
of reducing the redundancy of image information by efficient
coding (Graham and Field, 2007), and with psychophysical
studies showing that the frequency of occurrence of image
patterns extracted from natural scenes predicts human visual
perceptions (Yang and Purves, 2004).

AN EXAMPLE

To appreciate how vision can operate in this way, consider the
perceptions of lightness-darkness elicited by natural luminance
patterns. Figure 4 shows two simple patterns in which the
luminance of the central squares is the same, but the luminance
of the surrounding areas differs. As has been noted since Michel
Chevreul’s studies in the 19th century, the central squares
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FIGURE 3 | Visual perception based on the frequency of occurrence of patterns and subsequent behavior. By depending on the frequency of
scale-invariant patterns in images, useful perceptions can arise without information about physically measurable properties of the world. The driving force in this
understanding of vision is a biological feedback loop that, over time, orders the basic visual qualities we perceive by associating the frequency of recurring image
patterns with perceptual qualities according to survival and reproductive success.

FIGURE 4 | Lightness percepts elicited by luminance patterns. The two patterns comprise central squares with identical luminance values surrounded by
regions that have a lower (left panel) or higher (right panel) luminance. The central squares appear differently light in these contexts, despite the fact that they are
physically the same. The inset shows that when placed on the same background the central squares elicit the same lightness, although this percept differs from the
lightness of the squares in either of the two patterns above.

appear differently light, thus failing to agree with physical
measurements.

In wholly empirical terms, the reason for this effect is
outlined in Figure 5. In the course of maximizing survival and
reproductive success in response to scale-invariant patterns of
luminance, evolution and lifetime learning will have ranked
perceptions of relative lightness-darkness according to the

frequency of occurrence of the luminance of any element
in a pattern, given the luminance values of the rest of the
elements. Absent this ordering according to the frequency of
recurring image patterns, the generation of useful perceptions
and behaviors would be stymied by the fact that these or any
other patterns cannot specify the measured properties of the
objects and conditions that gave rise to them (see Figure 1).

Frontiers in Systems Neuroscience | www.frontiersin.org 6 November 2015 | Volume 9 | Article 156

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Purves et al. Perception and Reality

FIGURE 5 | Lightness predicted by the frequency of recurrent luminance patterns. The contexts of luminance patterns in column 1 are the same as in
Figure 4, with an unspecified central value indicated by the question marks. The frequency of occurrence of central luminance values in these patterns can be
determined by repeatedly sampling natural images using the patterns as templates (see column 2). To maximize behavioral success, the lightness elicited by the
central luminance value in Figure 4 (indicated by the red ‘Ts’ in column 2) should evolve to accord with its accumulated frequency of occurrence in the two patterns
(dashed red lines in the graphs in column 3) rather than with its actual luminance, thus explaining why the same central luminance in Figure 4 is perceived differently.
Organisms therefore evolve to match their perceptions to the accumulated frequencies of occurrence of targets given a context through their enhanced survival over
evolutionary time (as shown in Figure 3). (Note that using templates to determine the frequency of occurrence of patterns is simply a convenient way of collecting
the pertinent data, and does not imply that the visual system uses templates to sample retinal images.) (Original data is in Yang and Purves, 2004).

As shown in Figure 5, the empirical incidence of the two
patterns arising in retinal images generated by a database of
natural images shows that the same central luminance value
occurs less often in the context of a lower-luminance surround
than in the context of a higher-luminance surround (column 2;
Yang and Purves, 2004). The reason is that in any non-random
pattern, nearby points will tend to have similar luminance values
(see Figure 4; Olshausen and Field, 1996, 2000). Consequently, if
the lightness-darkness values of the central squares are ordered
according to their relative frequency of occurrence in these
patterns (column 3), the same luminance value should elicit a
lighter appearance in the context of a less luminant surround
when compared to a more luminant surround, as it does (see
Figure 4).

In summary, the frequencies of occurrence of luminance
values in image patterns responded to over time predict the
qualities we see in this example because the range of this basic
perceptual quality (lightness-darkness) has been ordered over
a useful range (lightest to darkest) according to the relative
success of stimulus-response associations. Similar ordering of
data arising from the frequency of pattern occurrence in both
natural and simulated environments has been used to rationalize
more complex stimuli that elicit perceptions of lightness (Yang
and Purves, 2004), color (Long et al., 2006), interval and angle

magnitude (Howe and Purves, 2005), the speed of motion
(Wojtach et al., 2008, 2009), and the direction of motion (Sung
et al., 2009).

CONSEQUENCES OF INPUT-OUTPUT
ASSOCIATIONS ON A WHOLLY
EMPIRICAL BASIS

Behaviorally successful associations generated in this way
automatically tie the frequency of occurrence of stimulus
patterns to the frequency of occurrence of responses, explaining
why relying on the frequency of occurrence of stimulus
patterns predicts perception: every time a given image pattern
occurs as input, the associated output arises from trial and
error feedback, which in biology tracks reproductive success.
The result is perceptions that become more and more
useful over time. Although in any trial and error process
input-output equivalence is never reached, after sufficient
evolution the cumulative distribution function of the stimulus
input will come to align with the cumulative distribution
function of the perceptual output closely enough to predict
many of the results of human psychophysics (Purves et al.,
2014).
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When conceived in this way it makes sense that visual
perceptions are not correlated with light intensity or any
other physical property, as psychophysics amply demonstrates.
Although relying on the frequency of occurrence of patterns
uncouples perceived values from their measured physical
parameters (e.g., surface reflectance), it endows visual agents
with the ability to perceive and act in their environments in
ways that led to biological success in the past, and are therefore
likely to succeed in the present. While this strategy makes it
seem that we see the world as it really is, vision on a wholly
empirical basis is not veridical and has a different goal: to
generate useful perceptions without measuring or recovering
real-world properties.

EXPLORING NEURONAL CONNECTIVITY
IN WHOLLY EMPIRICAL TERMS

Bayesian approaches to perception use inferences about real-
world properties as a tool for understanding whatever processing
is accomplished by the visual brain. But as has already been
emphasized, biological sensing systems cannot recover these
properties.

The wholly empirical alternative we describe is generally
consistent with other studies that do not assume the recovery
of real-world properties (e.g., Janke et al., 1999; Onat et al.,
2011). Ultimately, any approach to vision based on empirically
successful input-output associations must explain how this
strategy is related to the documented physiology and anatomy
of the primate and other visual systems. In principle, the most
direct way to unravel the circuit mechanics underlying a wholly
empirical (or any other) strategy would be to mimic the trial
and error process of association on which evolution relies. Until
relatively recently, this approach would have been fanciful. But
the advent of genetic and other computer algorithms has made
simulating the evolution of artificial neural networks in model
environments relatively easy. This technology offers a way of
linking any empirical understanding of vision to the wealth of
information already in hand from physiological and anatomical
studies.

A number of studies have shown the feasibility of evolving
neural networks on the basis of experience (Geisler and Diehl,
2002; Boots et al., 2007; Corney and Lotto, 2007; Geisler et al.,
2009; Burge and Geisler, 2011). More recent work has asked
whether the connectivity and operating principles of networks
evolved on a wholly empirical basis is similar to that found
in biological circuitry. For example, simple networks have
been evolved to rank responses according to the frequency of
occurrence of patterns extracted from natural and simulated
images (Ng et al., 2013; Morgenstern et al., 2014). The most
obvious feature that emerges is the center-surround receptive
field. In addition to efficiency, this organization enables the
interaction of targets and contexts, heightens sensitivity to
frequently occurring stimuli, and automatically adapts to overall
luminance and local contrast. These features are all characteristic
of neurons in the early stages of visual systems like ours
(Sakmann and Creutzfeldt, 1969; Geisler and Albrecht, 1992;
Bonin et al., 2005; Hubel and Wiesel, 2005).

VISION AS REFLEXIVE

Any fully empirical account of vision implies that perceptions
and their neural underpinnings are reflexive. The term ‘‘reflex’’
alludes to behaviors such as the ‘‘knee-jerk’’ (myotatic) response
that depend on the transfer of information from sensory input
to motor output via circuitry established by behavioral success
over evolutionary time. The advantages of reflex responses are
clear: circuitry that links input to output as directly as possible
allows the nervous system to respond with maximum speed
and accuracy. It does not follow, however, that reflex responses
must be ‘‘simple’’, that they are limited to motor acts, or that
they entail only ‘‘lower order’’ neural circuitry. Sherrington
(1947), who pioneered the study of reflex circuits, was well
aware that the concept of a ‘‘simple’’ reflex is, in his words, a
‘‘convenient. . .fiction’’, since ‘‘all parts of the nervous system are
connected together and no part of it is ever capable of reaction
without affecting and being affected by other parts . . .’’. There
is no evidence that any response to sensory input differs from a
spinal reflex, other than by the number of synaptic connections
in the input-output circuitry. Understanding vision as reflexive
(i.e., hard-wired at any givenmoment but subject to modification
by subsequent experience) also affords the ability to account for
visual perceptions generated within a few tens of milliseconds in
response to complex stimuli such as wind-blown leaves, running
water, animal movements and numerous other circumstances.
Computer vision models that depend on reverse-engineering
scenes from images by inferring the large number of real world
sources that could have generated these complex image streams
would likely require more computational power than is necessary
for the tasks that visual and other biological sensing systems
routinely carry out. Although it is difficult to imagine how
visual systems could generate perceptions of complex scenes
almost immediately by a series of hierarchical computations,
this problem is resolved if visual ‘‘processing’’ is re-imagined
as the result of ‘‘computations’’ that have, in effect, already
been accomplished by laying down connectivity instantiated
by feedback from empirical success over evolutionary and
individual time (see Figure 3). This strategic difference is
presumably themain reason whymachine vision based on logical
algorithms cannot match the performance of biological vision on
many tasks.

LIMITATIONS OF A WHOLLY EMPIRICAL
APPROACH

As with any theory, there are limitations to the strategy of visual
perception advocated here, both methodological and conceptual.
With respect to methodology, when investigating the perception
of lightness (see Figures 4, 5), the luminance values comprising
the database were collected from a limited range of environments
assumed to be representative of the types of scenes where the
human visual system evolved. In addition, the fact that humans
and other animals attend to specific aspects of the environment,
thus biasing the frequency distribution of sensory input, was
not taken into account. While these and other deficiencies
are important, given that this strategy successfully predicts
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the standard simultaneous lightness contrast effect shown in
Figure 4 and a variety of more complex lightness effects (Yang
and Purves, 2004)—in addition to other puzzling perceptions of
color, form and motion (see above)—the empirical framework
seems well supported by evidence that has not been supplied by
other approaches. This last point stands as a challenge to any
theory of perception, including broader unifying concepts such
as the idea that the common goal of brain function is to satisfy a
‘‘free-energy principle’’ (Friston, 2010).

THE WHOLLY EMPIRICAL THEORY AND
COGNITION

It is worth noting that higher order phenomena such as visual
attention and visual memory could also arise by associating the
relative frequency of recurring scale-invariant image patterns
with useful responses. As in the case of the basic visual qualities
considered here, the relevant circuitry would also be reflexive,
without the need to invoke additional ‘‘cognitive’’ mechanisms:
every time a given image pattern occurred the response dictated
by association would be further enhanced according to its utility.
As a result the foci of visual attention and the visual memories

elicited would, like perceptions, gradually become more and
more useful over time.

CONCLUSION

The idea that vision operates empirically has taken several forms
and enjoyed different degrees of enthusiasm since Helmholtz
introduced the concept of unconscious inference in the 19th
century. Vision on a wholly empirical basis is now seen by some
investigators as themost plausible way to understand how stimuli
that cannot specify their physical sources can nonetheless give
rise to useful perceptions and routinely successful visually guided
behaviors. Understanding perception in these terms implies a
strategy of nervous system operation that differs fundamentally
from the concept of detecting stimulus features and recovering
real-world properties by algorithmic computations that in one
way or another depend on accessing physical parameters to
guide actions. By relying on evolved reflex associations that have
ordered visual qualities according to the impact of the relative
frequency of occurrence of stimulus patterns on reproductive
success, vision can circumvent the inherent uncertainty of retinal
images, and explain the qualities we actually see.
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